当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons
Nature Photonics ( IF 35.0 ) Pub Date : 2017-06-26 , DOI: 10.1038/nphoton.2017.98
Achim Woessner , Yuanda Gao , Iacopo Torre , Mark B. Lundeberg , Cheng Tan , Kenji Watanabe , Takashi Taniguchi , Rainer Hillenbrand , James Hone , Marco Polini , Frank H. L. Koppens

Modulating the amplitude and phase of light is at the heart of many applications such as wavefront shaping1, transformation optics2,3, phased arrays4, modulators5 and sensors6. Performing this task with high efficiency and small footprint is a formidable challenge7,8. Metasurfaces5,9 and plasmonics10 are promising, but metals exhibit weak electro-optic effects. Two-dimensional materials, such as graphene, have shown great performance as modulators with small drive voltages11,12. Here, we show a graphene plasmonic phase modulator that is capable of tuning the phase between 0 and 2π in situ. The device length of 350 nm is more than 30 times shorter than the 10.6 μm free-space wavelength. The modulation is achieved by spatially controlling the plasmon phase velocity in a device where the spatial carrier density profile is tunable. We provide a scattering theory for plasmons propagating through spatial density profiles. This work constitutes a first step towards two-dimensional transformation optics3 for ultracompact modulators7 and biosensing13.



中文翻译:

使用石墨烯等离子体激元在350 nm占位面积中对红外光进行2π电相位控制

调制光的振幅和相位是许多应用程序的核心,例如波前成形1,转换光学器件2,3,相控阵4,调制器5和传感器6。以高效率和小占用空间执行此任务是一个艰巨的挑战7,8。超表面5,9和等离激元10是有希望的,但是金属显示出弱的电光效应。二维材料(例如石墨烯)作为具有较小驱动电压11,12的调制器已显示出出色的性能。在这里,我们展示了一种石墨烯等离激元相位调制器,该调制器能够在0至2π之间原位调整相位。350 nm的器件长度比10.6μm自由空间波长短30倍以上。通过在空间载流子密度分布可调的设备中,通过空间控制等离激元相速度来实现调制。我们为通过空间密度分布传播的等离激元提供了散射理论。这项工作构成了面向超紧凑型调制器7和生物传感13的二维转换光学器件3的第一步。

更新日期:2017-06-27
down
wechat
bug