当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing CO2-resistant oxygen-selective mixed ionic–electronic conducting membranes: guidelines, recent advances, and forward directions
Chemical Society Reviews ( IF 46.2 ) Pub Date : 2017-04-24 00:00:00 , DOI: 10.1039/c6cs00841k
Chi Zhang 1, 2, 3, 4 , Jaka Sunarso 5, 6, 7, 8, 9 , Shaomin Liu 1, 2, 3, 4
Affiliation  

CO2 resistance is an enabling property for the wide-scale implementation of oxygen-selective mixed ionic–electronic conducting (MIEC) membranes in clean energy technologies, i.e., oxyfuel combustion, clean coal energy delivery, and catalytic membrane reactors for greener chemical synthesis. The significant rise in the number of studies over the past decade and the major progress in CO2-resistant MIEC materials warrant systematic guidelines on this topic. To this end, this review features the pertaining aspects in addition to the recent status and advances of the two most promising membrane materials, perovskite and fluorite-based dual-phase materials. We explain how to quantify and design CO2 resistant membranes using the Lewis acid–base reaction concept and thermodynamics perspective and highlight the relevant characterization techniques. For perovskite materials, a trade-off generally exists between CO2 resistance and O2 permeability. Fluorite materials, despite their inherent CO2 resistance, typically have low O2 permeability but this can be improved via different approaches including thin film technology and the recently developed minimum internal electronic short-circuit second phase and external electronic short-circuit decoration. We then elaborate the two main future directions that are centralized around the development of new oxide compositions capable of featuring simultaneously high CO2 resistance and O2 permeability and the exploitation of phase reactions to create a new conductive phase along the grain boundaries of dual-phase materials. The final part of the review discusses various complimentary characterization techniques and the relevant studies that can provide insights into the degradation mechanism of oxide-based materials upon exposure to CO2.

中文翻译:

设计耐CO 2的氧选择性离子-电子混合导电膜:指南,最新进展和前进方向

CO 2电阻是用于清洁能源技术,在大规模实施的氧选择性混合离子电子传导(MIEC)膜的一个有利的特性,即,氧燃烧,清洁煤能量递送,以及用于更绿色化学合成催化膜反应器。在过去的十年中,研究数量的显着增加以及耐CO 2的MIEC材料的重大进展都保证了有关该主题的系统指南。为此,除了两种最有前途的膜材料(钙钛矿和萤石基双相材料)的最新状态和进展外,本综述还介绍了相关方面。我们将说明如何量化和设计CO 2使用路易斯酸碱反应概念和热力学观点的耐腐蚀膜,并突出了相关的表征技术。对于钙钛矿材料,通常在耐CO 2和O 2的渗透性之间进行权衡。萤石的材料,尽管它们固有的CO 2电阻,典型地具有低Ò 2渗透性,但这可以提高通过不同的方法,包括薄膜技术和最近开发的最小内部电子短路第二相和外部电子短路装饰。然后,我们阐述了两个主要的未来方向,这些方向集中在能够同时具有高耐CO 2和O 2渗透性的新型氧化物组合物的开发以及利用相反应沿双相晶界产生新的导电相的方向上。材料。这篇综述的最后部分讨论了各种互补的表征技术和相关研究,这些研究可以提供有关暴露于CO 2的氧化物基材料降解机理的见解。
更新日期:2017-05-04
down
wechat
bug