代表论文
2025年
114.Liu, L., Huang, Z., Zhu, Z., Sun, A., Zhao, J., Xu, Y., Song, W., Tang, Z., Chen, X., 2025. Dynamic Size‐Change Nanovaccine for Enhancing Lymph Node Deep Penetration and Eliciting Robust Antitumor Immune Responses. Advanced Materials.. https://doi.org/10.1002/adma.202504909
113.Zhao H, Gao Y, Ma S, et al. Hyaluronidase nanogel-armed CAR-T cell for synergistically reducing tumor extracellular matrix and improving efficacy against solid tumors. Nano Research, 2025, 18(5): 94907359. https://doi.org/10.26599/NR.2025.94907359
112.Huang, Z., Liu, L., Zhu, Z., Wang, S., Zhao, J., Ma, S., Si, X., Xu, Y., Wu, F., Song, W., & Chen, X. (2025). Tuning Surface Valences of Nanoengagers to Enhance Their Structural Advantages for Efficiently Redirecting T Cells against Solid Tumors. ACS Nano, 19(1), 381-395. https://doi.org/10.1021/acsnano.4c08293
2024年
111.Si, X., Ji, G., Ma, S., Huang, Z., Liu, T., Shi, Z., Zhang, Y., Li, J., Song, W., Chen, X., 2024. Minimally Invasive Injectable Gel for Local Immunotherapy of Liver and Gastric Cancer. Advanced Science 11.. https://doi.org/10.1002/advs.202405935
110.Lv, P., Wang, Z., Si, X., Su, J., Yu, Z., Yu, H., Ji, G., & Song, W. (2024). Biopolymer immune implants co-loaded with TMZ, R848 and IOX1 for perioperative therapy of glioblastoma. Acta Biomaterialia, 189, 143-154. https://doi.org/https://doi.org/10.1016/j.actbio.2024.09.053
109.Huang, Z., Zhu, Z., Liu, L., Song, W., & Chen, X. (2024). Preparation of viromimetic rod-like nanoparticle vaccines (RLNVax) and study of their humoral immune activation efficacy. Biomaterials Science, 12(19), 5115-5122. DOI:10.1039/D4BM00827H
108.Chen, H., Zhu, Z., Lv, K., Qi, Y., Si, X., Ma, S., Song, W., & Chen, X. (2024). Uniform Polymeric Nanovaccine Platform for Improving the Availability and Efficacy of Neoantigen Peptides. Nano Letters, 24(33), 10114-10123. https://doi.org/10.1021/acs.nanolett.4c02196
107. Shi Z, Gao Z, Zhuang X, et al. Dynamic Covalent Hydrogel as a Single‐dose Vaccine Adjuvant for Sustained Antigen Release and Significantly Elevated Humoral Immunity[J]. Advanced Healthcare Materials, 2024: 2400886. https://doi.org/10.1002/adhm.202400886
106. Ji G, Zhao J, Si X, et al. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria[J]. Advanced Drug Delivery Reviews, 2024: 115345. https://doi.org/10.1016/j.addr.2024.115345
105. Lv K, Ma S, Liu L, et al. Peptide nanovaccine conjugated via a retro-Diels–Alder reaction linker for overcoming the obstacle in lymph node penetration and eliciting robust cellular immunity[J]. Journal of Materials Chemistry B, 2024. https://doi.org/10.1039/d4tb00674g
104. Ma S, Yao H, Si X, et al. Orally available dextran-aspirin nanomedicine modulates gut inflammation and microbiota homeostasis for primary colorectal cancer therapy[J]. Journal of Controlled Release, 2024. https://doi.org/10.1016/j.jconrel.2024.05.002
103. Zhao H, Ma S, Qi Y, et al. A polyamino acid-based phosphatidyl polymer library for in vivo mRNA delivery with spleen targeting ability[J]. Materials Horizons, 2024. https://doi.org/10.1039/d3mh02066e
102. Chen H, Huang Z, Li J, et al. Hit-and-run vaccine system that overcomes limited neoantigen epitopes for efficient broad antitumor response[J]. Science Bulletin, 2024. https://doi.org/10.1016/j.scib.2024.01.039
101. Liu T, Si X, Liu L, et al. Injectable Nano-in-Gel Vaccine for Spatial and Temporal Control of Vaccine Kinetics and Breast Cancer Postsurgical Therapy[J]. ACS nano, 2024. https://doi.org/10.1021/acsnano.3c08376
2023年
100. Huang Z, Zhuang X, Liu L, et al. Modularized viromimetic polymer nanoparticle vaccines (VPNVaxs) to elicit durable and effective humoral immune responses[J]. National Science Review, 2024, 11(3): nwad310. https://doi.org/10.1093/nsr/nwad310
99. Gao Y, Zhao H, Zhao J, et al. Polymer-based synthetic oncolytic virus-like nanoparticles for cancer immunotherapy[J]. Science China Chemistry, 2023, 66(12): 3576-3586. https://doi.org/10.1007/s11426-023-1841-8
98. Zhao J, Liu L, Wang Y, et al. Heterocyclic Molecules Tethered Branched Polymers with Innate Immune Stimulating Activity[J]. Ccs Chemistry, 2023: 1-11. https://doi.org/10.31635/ccschem.023.202303214
97. Liu L, Zhao J, Huang Z, et al. Mannan-decorated STING-activating vaccine carrier for spatial coordinative stimulating antigen-specific immune responses[J]. Fundamental Research, 2023. https://doi.org/10.1016/j.fmre.2023.03.018
96. Si X, Ji G, Ma S, et al. Comprehensive evaluation of biopolymer immune implants for peritoneal metastasis carcinoma therapy[J]. Journal of Controlled Release, 2023, 353: 289-302. https://doi.org/10.1016/j.jconrel.2022.11.028
95. 朱真逸, 宋万通, 陈学思. 高分子免疫佐剂材料[J]. 高分子学报, 2023, 54(5):534-549.
https://doi:10.11777/j.issn1000-3304.2022.22403
94. 司星辉, 宋万通, 陈学思. 免疫治疗药物传输材料[J].高分子学报, 2023, 54(6): 837-852.
https://doi:10.11777/j.issn1000-3304.2022.22401
2022年
93. Cao Y, Song W, Chen X. Multivalent sialic acid materials for biomedical applications[J]. Biomaterials Science, 2023. https://doi.org/10.1039/D2BM01595A
92. 宋万通, 陈学思.高分子疫苗载体研究现状与前沿[J].中国基础科学,2022,24(01):7-12.
91. Zhao J, Song W, Tang Z, et al. Macromolecular Effects in Medicinal Chemistry※[J]. Acta Chimica Sinica, 2022, 80(4): 563. http://sioc-journal.cn/Jwk_hxxb/EN/10.6023/A21120602
90. Si X, Ji G, Ma S, et al. Comprehensive evaluation of biopolymer immune implants for peritoneal metastasis carcinoma therapy[J]. Journal of Controlled Release, 2023, 353: 289-302. https://doi.org/10.1016/j.jconrel.2022.11.028
89. Gao Y, Zhao J, Huang Z, et al. In Situ Reprogramming of Tumors for Activating the OX40/OX40 Ligand Checkpoint Pathway and Boosting Antitumor Immunity[J]. ACS Biomaterials Science & Engineering, 2022. https://doi.org/10.1021/acsbiomaterials.1c01637
88. Dong S, Ma S, Chen H, et al. Nucleobase-crosslinked poly (2-oxazoline) nanoparticles as paclitaxel carriers with enhanced stability and ultra-high drug loading capacity for breast cancer therapy[J]. Asian Journal of Pharmaceutical Sciences, 2022. https://doi.org/10.1016/j.ajps.2022.04.006
87. Zhao J, Xu Y, Ma S, et al. A Minimalist Binary Vaccine Carrier for Personalized Postoperative Cancer Vaccine Therapy[J]. Advanced Materials, 2022, 34(10): 2109254. https://doi.org/10.1002/adma.202109254
86. Xu Y, Ma S, Zhao J, et al. Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity[J]. Biomaterials, 2022, 284: 121489. https://doi.org/10.1016/j.biomaterials.2022.121489
85. Shen L, Li J, Liu Q, et al. Nano-trapping CXCL13 reduces regulatory B cells in tumor microenvironment and inhibits tumor growth[J]. Journal of Controlled Release, 2022, 343: 303-313. https://doi.org/10.1016/j.jconrel.2022.01.039
2021年
84. Dong S, Tang Y, He P, et al. Hydrophobic modified poly (l‐glutamic acid) graft copolymer micelles with ultrahigh drug loading capacity for anticancer drug delivery[J]. Polymer International, 2022, 71(4): 487-494. https://doi.org/10.1002/pi.6342
83. Qin Y, Lao Y H, Wang H, et al. Combatting Helicobacter pylori with oral nanomedicine[J]. Journal of Materials Chemistry B, 2021. https://doi.org/10.1039/D1TB02038B
82. Yu Z, Xu Y, Yao H, et al. A simple and general strategy for postsurgical personalized cancer vaccine therapy based on an injectable dynamic covalent hydrogel[J]. Biomaterials Science, 2021, 9(20): 6879-6888. https://doi.org/10.1039/D1BM01000J
81. Zhang J, Hu K, Di L, et al. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health[J]. Advanced Drug Delivery Reviews, 2021, 178: 113964. https://doi.org/10.1016/j.addr.2021.113964
80. Ji G, Si X, Dong S, et al. Manipulating Liver Bile Acid Signaling by Nanodelivery of Bile Acid Receptor Modulators for Liver Cancer Immunotherapy[J]. Nano Letters, 2021, 21(16): 6781-6791. https://doi.org/10.1021/acs.nanolett.1c01360
79. Xu Y, Ma S, Zhao J, et al. Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy[J]. Nano Research, 2022, 15(2): 1183-1192. https://doi.org/10.1007/s12274-021-3622-6
78. Si X, Ji G, Ma S, et al. In–Situ‐Sprayed Dual‐Functional Immunotherapeutic Gel for Colorectal Cancer Postsurgical Treatment[J]. Advanced Healthcare Materials, 2021, 10(20): 2100862. https://doi.org/10.1002/adhm.202100862
77. Wang S, Guo W, Zhao Y, et al. JQ1 Synergize with Anti-CD47 Antibody to Enhance the Function of Macrophages and Repress the Progression of Burkitt Lymphoma[J]. 2021.
76. Ma S, Xu Y, Song W. Functional bionanomaterials for cell surface engineering in cancer immunotherapy[J]. APL bioengineering, 2021, 5(2): 021506. https://doi.org/10.1063/5.0045945
75. Song W. Functional bionanomaterials help optimize surface engineering to improve cancer immunotherapy[J]. 2021. https://doi.org/10.1063/10.0004978
74. Liu Z, Wang S, Guo W, et al. Cisplatin Loaded Poly (L-glutamic acid)-g-Methoxy Polyethylene Glycol Complex Nanoparticles Combined with Gemcitabine Presents Improved Safety and Lasting Anti-Tumor Efficacy in a Murine Xenograft Model of Human Aggressive B Cell Lymphoma[J]. Journal of Biomedical Nanotechnology, 2021, 17(4): 652-661. https://doi.org/10.1166/jbn.2021.3060
73. Ji G, Zhang Y, Si X, et al. Biopolymer immune implants’ sequential activation of innate and adaptive immunity for colorectal cancer postoperative immunotherapy[J]. Advanced Materials, 2021, 33(3): 2004559. https://doi.org/10.1002/adma.202004559
72. Zhang Y, Ma S, Liu X, et al. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy[J]. Advanced Materials, 2021, 33(7): 2007293. https://doi.org/10.1002/adma.202007293
71. Zhao J, Ma S, Xu Y, et al. In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy[J]. Biomaterials, 2021, 268: 120542. https://doi.org/10.1016/j.biomaterials.2020.120542
2020年
70. Ji G, Ma L, Yao H, et al. Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy[J]. Acta Pharmaceutica Sinica B, 2020, 10(11): 2171-2182. https://doi.org/10.1016/j.apsb.2020.09.004
69. Xu Y, Ma S, Si X, et al. Polyethyleneimine‐CpG Nanocomplex as an In Situ Vaccine for Boosting Anticancer Immunity in Melanoma[J]. Macromolecular Bioscience, 2021, 21(2): 2000207. https://doi.org/10.1002/mabi.202000207
68. Xiong Y, Song W, Shen L, et al. Oral metformin and polymetformin reprogram immunosuppressive microenvironment and boost immune checkpoint inhibitor therapy in colorectal cancer[J]. Advanced Therapeutics, 2020, 3(12): 2000168. https://doi.org/10.1002/adtp.202000168
67. Si X, Song W, Yang S, et al. Glucose and pH Dual‐Responsive Nanogels for Efficient Protein Delivery[J]. Macromolecular bioscience, 2019, 19(9): 1900148. https://doi.org/10.1002/mabi.201900148
66. Si X, Ji G, Ma S, et al. Biodegradable implants combined with immunogenic chemotherapy and immune checkpoint therapy for peritoneal metastatic carcinoma postoperative treatment[J]. ACS Biomaterials Science & Engineering, 2020, 6(9): 5281-5289. https://doi.org/10.1021/acsbiomaterials.0c00840
65. Guo W, Song Y, Song W, et al. Co-delivery of doxorubicin and curcumin with polypeptide nanocarrier for synergistic lymphoma therapy[J]. Scientific Reports, 2020, 10(1): 1-16. http://creativecommons.org/licenses/by/4.0/.
64. Huang Z, Song W, Chen X. Supramolecular self-assembled nanostructures for cancer immunotherapy[J]. Frontiers in Chemistry, 2020, 8: 380. https://doi.org/10.3389/fchem.2020.00380
63. Ma S, Song W, Xu Y, et al. A ROS-responsive aspirin polymeric prodrug for modulation of tumor microenvironment and cancer immunotherapy[J]. CCS Chemistry, 2020, 2(6): 390-400. https://doi.org/10.31635/ccschem.020.202000140
62. Ma S, Song W, Xu Y, et al. Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity[J]. Nano Letters, 2020, 20(4): 2514-2521. https://doi.org/10.1021/acs.nanolett.9b05265
61. Song W, Das M, Chen X. Nanotherapeutics for immuno-oncology: a crossroad for new paradigms[J]. Trends in cancer, 2020, 6(4): 288-298. https://doi.org/10.1016/j.trecan.2020.01.011
60. Si X, Ma S, Xu Y, et al. Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic[J]. Journal of Controlled Release, 2020, 320: 83-95. https://doi.org/10.1016/j.jconrel.2020.01.021
2019年
59. Song W, Anselmo A C, Huang L. Nanotechnology intervention of the microbiome for cancer therapy[J]. Nature nanotechnology, 2019, 14(12): 1093-1103. https://doi.org/10.1038/s41565-019-0589-5
58. Ma S, Song W, Xu Y, et al. Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy[J]. Biomaterials, 2020, 232: 119676. https://doi.org/10.1016/j.biomaterials.2019.119676
57. Zhang J, Shen L, Li X, et al. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer[J]. ACS nano, 2019, 13(11): 12511-12524. https://doi.org/10.1021/acsnano.9b02875
56. Jiang J, Shen N, Song W, et al. Combretastatin A4 nanodrug combined plerixafor for inhibiting tumor growth and metastasis simultaneously[J]. Biomaterials science, 2019, 7(12): 5283-5291. https://doi.org/10.1039/C9BM01418G
55. Feng X, Xu W, Li Z, et al. Immunomodulatory nanosystems[J]. Advanced science, 2019, 6(17): 1900101. https://doi.org/10.1002/advs.201900101
54. Feng X, Xu W, Li Z, et al. Disease Immunotherapy: Immunomodulatory Nanosystems (Adv. Sci. 17/2019)[J]. Advanced Science, 2019, 6(17): 1970100. https://doi.org/10.1002/advs.201970100
53. Leong H S, Butler K S, Brinker C J, et al. On the issue of transparency and reproducibility in nanomedicine[J]. Nature nanotechnology, 2019, 14(7): 629-635. https://doi.org/10.1038/s41565-019-0496-9
52. Si X, Song W, Yang S, et al. Glucose and pH Dual‐Responsive Nanogels for Efficient Protein Delivery[J]. Macromolecular bioscience, 2019, 19(9): 1900148. https://doi.org/10.1002/mabi.201900148
51. Leong H S, Butler K S, Brinker C J, et al. On the issue of transparency and reproducibility in nanomedicine[J]. Nature nanotechnology, 2019, 14(7): 629-635. https://doi.org/10.1038/s41565-019-0496-9
50. Song W, Liu R, Huang L. Response to Comment on “Trapping of Lipopolysaccharide to Promote Immunotherapy against Colorectal Cancer and Attenuate Liver Metastasis”[J]. Advanced Materials, 2019, 31(28): 1902569. https://doi.org/10.1002/adma.201902569
49. Leong H S, Butler K S, Brinker C J, et al. On the issue of transparency and reproducibility in nanomedicine[J]. Nature nanotechnology, 2019, 14(7): 629-635. https://doi.org/10.1038/s41565-019-0496-9
48. Wang Y, Yu H, Zhang D, et al. Co-administration of combretastatin A4 nanoparticles and sorafenib for systemic therapy of hepatocellular carcinoma[J]. Acta biomaterialia, 2019, 92: 229-240. https://doi.org/10.1016/j.actbio.2019.05.028
47. Liu M, Song W, Huang L. Drug delivery systems targeting tumor-associated fibroblasts for cancer immunotherapy[J]. Cancer letters, 2019, 448: 31-39. https://doi.org/10.1016/j.canlet.2019.01.032
46. Song W, Das M, Xu Y, et al. Leveraging biomaterials for cancer immunotherapy: targeting pattern recognition receptors[J]. Materials Today Nano, 2019, 5: 100029. https://doi.org/10.1016/j.mtnano.2019.100029
45. An S, Tiruthani K, Wang Y, et al. Locally Trapping the C‐C Chemokine Receptor Type 7 by Gene Delivery Nanoparticle Inhibits Lymphatic Metastasis Prior to Tumor Resection[J]. Small, 2019, 15(9): 1805182. https://doi.org/10.1002/smll.201805182
44. Chen Y, Song W, Shen L, et al. Vasodilator hydralazine promotes nanoparticle penetration in advanced desmoplastic tumors[J]. ACS nano, 2019, 13(2): 1751-1763. https://doi.org/10.1021/acsnano.8b07830
43. Wang Y, Yu H, Zhang D, et al. Co-administration of combretastatin A4 nanoparticles and sorafenib for systemic therapy of hepatocellular carcinoma[J]. Acta biomaterialia, 2019, 92: 229-240. https://doi.org/10.1016/j.actbio.2019.05.028
2018年
42. Song W, Tiruthani K, Wang Y, et al. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis[J]. Advanced Materials, 2018, 30(52): 1805007. https://doi.org/10.1002/adma.201805007
41. Shen L, Li J, Liu Q, et al. Local blockade of interleukin 10 and CXC motif chemokine ligand 12 with nano-delivery promotes antitumor response in murine cancers[J]. Acs Nano, 2018, 12(10): 9830-9841. https://doi.org/10.1021/acsnano.8b00967
40. Wang Y, Song W, Hu M, et al. Nanoparticle‐mediated HMGA1 silencing promotes lymphocyte infiltration and boosts checkpoint blockade immunotherapy for cancer[J]. Advanced Functional Materials, 2018, 28(36): 1802847. https://doi.org/10.1002/adfm.201802847
39. Yang C, Song W, Zhang D, et al. Poly (l-glutamic acid)-g-methoxy poly (ethylene glycol)-gemcitabine conjugate improves the anticancer efficacy of gemcitabine[J]. International Journal of Pharmaceutics, 2018, 550(1-2): 79-88. https://doi.org/10.1016/j.ijpharm.2018.08.037
38. Xiao H, Yan L, Dempsey E M, et al. Recent progress in polymer-based platinum drug delivery systems[J]. Progress in Polymer Science, 2018, 87: 70-106. https://doi.org/10.1016/j.progpolymsci.2018.07.004
37. Yang C, Xue B, Song W, et al. Reducing the toxicity of amphotericin B by encapsulation using methoxy poly (ethylene glycol)-b-poly (l-glutamic acid-co-l-phenylalanine)[J]. Biomaterials science, 2018, 6(8): 2189-2196. https://doi.org/10.1039/C8BM00506K
36. Song W, Shen L, Wang Y, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap[J]. Nature communications, 2018, 9(1): 1-11. http://creativecommons.org/licenses/by/4.0/.
2017年
35. Wang G, Song W, Shen N, et al. Curcumin-encapsulated polymeric nanoparticles for metastatic osteosarcoma cells treatment[J]. Science China Materials, 2017, 60(10): 995-1007. https://doi.org/10.1007/s40843-017-9107-x
34. Song W, Musetti S N, Huang L. Nanomaterials for cancer immunotherapy[J]. Biomaterials, 2017, 148: 16-30. https://doi.org/10.1016/j.biomaterials.2017.09.017
33. Wang G, Song W, Yang S, et al. Synergistic treatment of triple-negative breast cancer by doxorubicin and thioridazine and its nano-formulation[J]. Journal of Controlled Release, 2017, 259: e37-e38. https://doi.org/10.1016/j.jconrel.2017.03.100
32. Yang S, Shen N, Song W, et al. A novel monomethylauristatin E prodrug for malignant cancer targeted therapy[J]. Journal of Controlled Release, 2017, 259: e120. https://doi.org/10.1016/j.jconrel.2017.03.248
31. Liu T, Zhang D, Song W, et al. A poly (l-glutamic acid)-combretastatin A4 conjugate for solid tumor therapy: Markedly improved therapeutic efficiency through its low tissue penetration in solid tumor[J]. Acta biomaterialia, 2017, 53: 179-189. https://doi.org/10.1016/j.actbio.2017.02.001
30. Lv S, Tang Z, Song W, et al. Inhibiting solid tumor growth in vivo by non‐tumor‐penetrating nanomedicine[J]. Small, 2017, 13(12): 1600954. https://doi.org/10.1002/smll.201600954
2016年
29. Lin L, Chen J, Guo Z, et al. Exploring the in vivo fates of RGD and PEG modified PEI/DNA nanoparticles by optical imaging and optoacoustic imaging[J]. RSC advances, 2016, 6(113): 112552-112561. https://doi.org/10.1039/C6RA23647B
28. Niu Y, Song W, Zhang D, et al. Functional computer-to-plate near-infrared absorbers as highly efficient photoacoustic dyes[J]. Acta Biomaterialia, 2016, 43: 262-268. https://doi.org/10.1016/j.actbio.2016.07.026
27. Song W, Tang Z, Zhang D, et al. Solid tumor therapy using a cannon and pawn combination strategy[J]. Theranostics, 2016, 6(7): 1023. http://ivyspring.com/terms
26. Song W, Tang Z, Shen N, et al. Combining disulfiram and poly (l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance[J]. Journal of Controlled Release, 2016, 231: 94-102. https://doi.org/10.1016/j.jconrel.2016.02.039
25. Yu H, Tang Z, Li M, et al. Cisplatin loaded poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) complex nanoparticles for potential cancer therapy: preparation, in vitro and in vivo evaluation[J]. Journal of Biomedical Nanotechnology, 2016, 12(1): 69-78. https://doi.org/10.1166/jbn.2016.2152
2015年
24. Song W, Tang Z, Zhang D, et al. A cooperative polymeric platform for tumor-targeted drug delivery[J]. Chemical science, 2016, 7(1): 728-736. https://doi.org/10.1039/C5SC01698C
23. Song W, Tang Z, Lei T, et al. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2016, 12(2): 377-386. https://doi.org/10.1016/j.nano.2015.10.022
22. Lv S, Tang Z, Li M, et al. PEG-polypeptide conjugated with LHRH as an efficient vehicle for targeted delivery of doxorubicin to breast cancer[J]. Journal of controlled release: official journal of the Controlled Release Society, 2015, 213: e99. https://pubmed.ncbi.nlm.nih.gov/27005267/
21. Yu H, Tang Z, Song W, et al. Co-administration of iRGD enhancing the anticancer efficacy of cisplatin-loaded polypeptide nanoparticles[J]. Journal of controlled release: official journal of the Controlled Release Society, 2015, 213: e145-6. https://doi.org/10.1016/j.jconrel.2015.05.246
20. Song W, Tang Z, Zhang D, et al. Coadministration of vascular disrupting agents and nanomedicines to eradicate tumors from peripheral and central regions[J]. Small, 2015, 11(31): 3755-3761. https://doi.org/10.1002/smll.201500324
19. Yu H, Tang Z, Zhang D, et al. Poly (ornithine‐co‐arginine‐co‐glycine‐co‐aspartic Acid): Preparation via NCA Polymerization and its Potential as a Polymeric Tumor‐Penetrating Agent[J]. Macromolecular Bioscience, 2015, 15(6): 829-838. https://doi.org/10.1002/mabi.201500040
2014年
18. Yu H, Tang Z, Zhang D, et al. Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) complex nanoparticles for tumor therapy[J]. Journal of Controlled Release, 2015, 205: 89-97. https://doi.org/10.1016/j.jconrel.2014.12.022
17. Song W, Tang Z, Zhang D, et al. Comprehensive studies of pharmacokinetics and biodistribution of indocyanine green and liposomal indocyanine green by multispectral optoacoustic tomography[J]. RSC advances, 2015, 5(5): 3807-3813. https://doi.org/10.1039/C4RA09735A
16. Li M, Tang Z, Lin J, et al. Synergistic Antitumor Effects of Doxorubicin‐Loaded Carboxymethyl Cellulose Nanoparticle in Combination with Endostar for Effective Treatment of Non‐Small‐Cell Lung Cancer[J]. Advanced healthcare materials, 2014, 3(11): 1877-1888. https://doi.org/10.1002/adhm.201400108
15. Lv S, Tang Z, Zhang D, et al. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel[J]. Journal of controlled release, 2014, 194: 220-227. https://doi.org/10.1016/j.jconrel.2014.09.009
14. Lv S, Tang Z, Li M, et al. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer[J]. Biomaterials, 2014, 35(23): 6118-6129. https://doi.org/10.1016/j.biomaterials.2014.04.034
13. Haiyang Y, Zhaohui T, Wantong S, et al. Current Status and Future Prospects of Polymeric Nanocarrier for Tumor Targeting[J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2014, 35(5): 903-916. http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20130849
12. Lv S, Song W, Tang Z, et al. Charge-conversional PEG-polypeptide polyionic complex nanoparticles from simple blending of a pair of oppositely charged block copolymers as an intelligent vehicle for efficient antitumor drug delivery[J]. Molecular pharmaceutics, 2014, 11(5): 1562-1574. https://doi.org/10.1021/mp4007387
11. Song W, Tang Z, Zhang D, et al. Anti-tumor efficacy of c (RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin[J]. Biomaterials, 2014, 35(9): 3005-3014. https://doi.org/10.1016/j.biomaterials.2013.12.018
10. Li M, Tang Z, Lv S, et al. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin[J]. Biomaterials, 2014, 35(12): 3851-3864. https://doi.org/10.1016/j.biomaterials.2014.01.018
2013年
9. Song W, Tang Z, Li M, et al. Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects[J]. Acta Biomaterialia, 2014, 10(3): 1392-1402. https://doi.org/10.1016/j.actbio.2013.11.026
8. Li M, Lv S, Tang Z, et al. Polypeptide/D oxorubicin Hydrochloride Polymersomes Prepared Through Organic Solvent‐free Technique as a Smart Drug Delivery Platform[J]. Macromolecular bioscience, 2013, 13(9): 1150-1162. https://doi.org/10.1002/mabi.201300222
7. Lv S, Li M, Tang Z, et al. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy[J]. Acta biomaterialia, 2013, 9(12): 9330-9342. https://doi.org/10.1016/j.actbio.2013.08.015
6. Li M, Song W, Tang Z, et al. Nanoscaled poly (L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer[J]. ACS Applied Materials & Interfaces, 2013, 5(5): 1781-1792. https://doi.org/10.1021/am303073u
5. Yu S, He C, Ding J, et al. pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery[J]. Soft Matter, 2013, 9(9): 2637-2645. https://doi.org/10.1039/C2SM27616J
4. Li M, Tang Z, Sun H, et al. pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery[J]. Polymer Chemistry, 2013, 4(4): 1199-1207. https://doi.org/10.1039/C2PY20871G
2012年
3. Song W, Li M, Tang Z, et al. Methoxypoly (ethylene glycol)‐block‐Poly (L‐glutamic acid)‐loaded cisplatin and a combination with iRGD for the treatment of non‐small‐cell lung cancers[J]. Macromolecular bioscience, 2012, 12(11): 1514-1523. https://doi.org/10.1002/mabi.201200145
2. Song W, Tang Z, Li M, et al. Tunable pH‐sensitive poly (β‐amino ester) s synthesized from primary amines and diacrylates for intracellular drug delivery[J]. Macromolecular bioscience, 2012, 12(10): 1375-1383. https://doi.org/10.1002/mabi.201200122
1. Song W, Xiao C, Cui L, et al. Facile construction of functional biosurface via SI-ATRP and “click glycosylation”[J]. Colloids and Surfaces B: Biointerfaces, 2012, 93: 188-194. https://doi.org/10.1016/j.colsurfb.2012.01.002
--------------------------------------------------------------------------------------------------------------------------------------------------------
专利技术
1.