当前位置: X-MOL首页全球导师 国内导师 › 刘晓庆

个人简介

教育背景: 2003 年,山东师范大学化学化工与材料科学学院,学士 2009 年初,中科院长春应用化学研究所电分析化学国家重点实验室,博士 工作经历: 2009 - 2015 年,先后在丹麦奥胡斯大学化学系、交叉学科纳米中心,以色列耶路撒冷希伯来大学化学研究所、纳米科学与技术中心工作 2015 年 - 至今,武汉大学化学与分子科学学院,教授、博士生导师 获奖荣誉: 中科院刘永龄特等奖 入选国家级人才计划重点资助

研究领域

分析化学方法、生物医学材料。主要围绕核酸分子的组装与调控,开发先进材料与探针,用于传感分析检测、精准诊疗研究

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

(1) Programming Fast DNA Amplifier Circuits with Versatile Toehold Exchange Pathway. Small, 2024, https://doi.org/10.1002/smll.202402914 (2) Programming DNA Nanoassemblies into Polyvalent Lysosomal Degraders for Potent Degradation of Pathogenic Membrane Proteins. Nano Lett., 2024, 24, 37, 11573-11580. https://doi.org/10.1021/acs.nanolett.4c03102 (3) An Intelligent Redox-Responsive DNA Circuit for Robust On-Site Profiling of Glutathione-MicroRNA Signaling Pathway. Adv. Funct. Mater., 2024, 34(26), 2315993. https://doi.org/10.1002/adfm.202302708 (4) Light-Up Aptameric Sensor of Serotonin for Point-of-Care Use. Anal. Chem., 2023, 95(23), 9076-9082. https://doi.org/10.1021/acs.analchem.3c01456 (5) Synergistic Immunostimulation for Tumor Sensitization with a Biomineralized DNA Sponge. Nano Today, 2023, 52, 101996. https://doi.org/10.1016/j.nantod.2023.101996 (6) Construction of a Stimuli-Responsive DNAzyme-Braked DNA Nanomachine for the Amplified Imaging of miRNAs in Living Cells and Mice. CCS Chem., 2023, 5, 1697-1708. https://doi.org/10.31635/ccschem.022.202202171 (7) A Cellular Membrane-Confined Concatenate DNA Circuit for Non-Invasive Cell Modulation with High Accuracy and Efficiency. Adv. Funct. Mater., 2023, 33(40), 2302708. https://doi.org/10.1002/adfm.202302708 (8) Triggered Amplification of Gene Theranostics with High Accuracy and Efficacy Using Metallo-Nanoassemblies. Chem. Eng. J., 2023, 452, 139323. https://doi.org/10.1016/j.cej.2022.139323 (9) High-Fidelity ATP Imaging via an Isothermal Cascade Catalytic Amplifier. Chem. Sci., 2022, 13, 12198-12207. https://doi.org/10.1039/D2SC04560E (10) Boosting Cancer Immunotherapy Via the Convenient A2AR Inhibition Using a Tunable Nanocatalyst with Light-Enhanced Activity. Adv. Mater., 2022, 34, 2106967. https://doi.org/10.1002/adma.202106967 (11) Programmable Assembly of Multivalent DNA-Protein Superstructures for Tumor Imaging and Targeted Therapy. Angew. Chem. Int. Ed., 2022, 61(44), e202211505. https://doi.org/10.1002/anie.202211505 (12) A Dynamic DNA Nanosponge for Triggered Amplification of Gene-Photodynamic Modulation. Chem. Sci., 2022, 13, 5155-5163. https://doi.org/10.1039/D2SC00459C (13) Multifunctional DNAzyme-Anchored Metal–Organic Frameworks for Efficient Suppression of Tumor Metastasis. ACS Nano, 2022, 16(4), 5404-5417. https://doi.org/10.1021/acsnano.1c09008 (14) Visualization of Vaccine Dynamics with Quantum Dots for Immunotherapy. Angew. Chem. Int. Ed., 2021, 60(45), 24275-24283. https://doi.org/10.1002/anie.202111093 (15) A Smart Multiantenna Gene Theranostic System Based on the Programmed Assembly of Hypoxia-Related siRNAs. Nat. Commun., 2021, 12, 3953. https://doi.org/10.1038/s41467-021-24191-9 (16) A Bionanozyme with Ultrahigh Activity Enables Spatiotemporally Controlled Reactive Oxygen Species Generation for Cancer Therapy. Adv. Funct. Mater., 2021, 31, 2104100. https://doi.org/10.1002/adfm.202104100 (17) Precision Photothermal Therapy and Photoacoustic Imaging by In Situ Activatable Thermoplasmonics. Chem. Sci., 2021, 12, 10097-10105. https://doi.org/10.1039/D1SC02203B (18) Regulation of Redox Balance Enhances Phototherapy Efficacy and Suppresses Tumor Metastasis Using a Biocompatible Nanoplatform. Chem. Sci., 2021, 12, 148-157. https://doi.org/10.1039/D0SC04983B (Highlighted as Outside Front Cover) (19) A Cooperatively Activatable DNA Nanoprobe for Cancer Cell-Selective Imaging of ATP. Anal. Chem., 2021, 93(41), 13960–13966. https://doi.org/10.1021/acs.analchem.1c03284 (20) Precision Spherical Nucleic Acids Enable Sensitive FEN1 Imaging and Controllable Drug Delivery for Cancer Specific Therapy. Anal. Chem., 2021, 93(32), 11275–11283. https://doi.org/10.1021/acs.analchem.1c02264 (21) Modulation of Oxidative Stress in Cancer Cells with A Biomineralized Converter. ACS Materials Lett., 2021, 3, 1778-1785. https://doi.org/10.1021/acsmaterialslett.1c00470 (22) Multiple Blockades of the HGF/Met Signaling Pathway for Metastasis Suppression Using Nanoinhibitors. ACS Appl. Mater. Inter., 2021, 13(26), 30350–30358. https://doi.org/10.1021/acsami.1c07010 (23) An Efficient Photochemotherapy Nanoplatform Based on the Endogenous Biosynthesis of Photosensitizer in Macrophage-Derived Extracellular Vesicles. https://doi.org/10.1016/j.biomaterials.2021.121234 (24) Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angew. Chem. Int. Ed., 2020, 59(5), 1897-1905. https://doi.org/10.1002/anie.201915591 (Highlighted as Front Cover) (25) Biosynthesized Quantum Dot for Facile and Ultrasensitive Electrochemical and Electrochemiluminescence Immunoassay. Anal. Chem., 2020, 92(1), 1598-1604. https://doi.org/10.1021/acs.analchem.9b04919 (26) Immunostimulatory DNA Nanogel Enables Effective Lymphatic Drainage and High Vaccine Efficacy. ACS Materials Lett., 2020, 2(12), 1606–1614. https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00445 (Highlighted as Supplementary Cover) (27) Enhanced Immunostimulatory Activity of a Cytosine-Phosphate-Guanosine Immunomodulator by the Assembly of Polymer DNA Wires and Spheres. ACS Appl. Mater. Inter., 2020, 12(15), 17167-17176. https://doi.org/10.1021/acsami.9b21075 (28) Quantum Dot-Pulsed Dendritic Cell Vaccines Plus Macrophage Polarization for Amplified Cancer Immunotherapy. Biomaterials, 2020, 242, 119928. https://doi.org/10.1016/j.biomaterials.2020.119928 (29) Plasmonic and Photothermal Immunoassay via Enzyme-Triggered Crystal Growth on Gold Nanostars. Anal. Chem., 2019, 91(3), 2086–2092. https://doi.org/10.1021/acs.analchem.8b04517 (30) Versatile Catalytic Deoxyribozyme Vehicles for Multimodal Imaging-Guided Efficient Gene Regulation and Photothermal Therapy. ACS Nano, 2018, 12 (12), 12888–12901. https://doi.org/10.1021/acsnano.8b08101 (31) DNA Switches: From Principles to Applications. Angew. Chem. Int. Ed. 2015, 54, 1098–1129. https://doi.org/10.1002/anie.201404652 (32) Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc. Chem. Res. 2014, 47, 1673–1680. https://doi.org/10.1021/ar400316h (33) Dual Switchable CRET-Induced Luminescence of CdSe/ZnS Quantum Dots (QDs) by the Hemin/G-Quadruplex-Bridged Aggregation and Deaggregation of Two-Sized QDs. Nano Lett. 2014, 14, 6030-6035. https://doi.org/10.1021/nl503299f (34) Graphene Oxide/Nucleic Acid-Stabilized Silver Nanoclusters: Functional Hybrid Materials for Optical Aptamer Sensing and Multiplexed Analysis of Pathogenic DNAs. J. Am. Chem. Soc. 2013, 135, 11832–11839. https://doi.org/10.1021/ja403485r (35) Probing Biocatalytic Transformations with Luminescent DNA/Ag Nanoclusters. Nano Lett. 2013, 13, 309–314. https://doi.org/10.1021/nl304283c (36) Switching Photonic and Electrochemical Functions of a DNAzyme by DNA Machines. Nano Lett. 2013, 13, 219–225. https://doi.org/10.1021/nl303894h (37) Multiplexed Aptasensors and Amplified DNA Sensors Using Functionalized Graphene Oxide: Application for Logic Gate Operations. ACS Nano 2012, 6, 3553–3563. https://doi.org/10.1021/nn300598q (38) Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer-Substrate Complexes Using Hemin/G-Quadruplexes and CdSe/ZnS Quantum Dots. J. Am. Chem. Soc. 2011, 133, 11597–11604. https://doi.org/10.1021/ja202639m (39) Chemiluminescence and Chemiluminescence Resonance Energy Transfer (CRET) Aptamer Sensors Using Catalytic Hemin/G-Quadruplexes. ACS Nano 2011, 5, 7648–7655. https://doi.org/10.1021/nn202799d (40) Environmentally Friendly and Highly Sensitive Ruthenium(II) Tris(2,2'-bipyridyl) Electrochemiluminescent System Using 2-(dibutylamino)ethanol as Co-Reactant. Angew. Chem. Int. Ed. 2007, 46, 421–424. DOI: 10.1002/anie.200603491 (VIP, Very Important Paper)

推荐链接
down
wechat
bug