当前位置: X-MOL首页全球导师 海外导师 › Tang, Chuanbing


Education B. S. Polymer Science and Engineering, Nanjing University, 1997 M. S. Chemistry, Carnegie Mellon University, 2003 (with Kris Matyjaszewski / Tomasz Kowalewski) Ph. D. Chemistry, Carnegie Mellon University, 2006 (with Kris Matyjaszewski / Tomasz Kowalewski) Postdoc, Materials Research Lab, University of California Santa Barbara 2006-2009 (with Edward Kramer / Craig Hawker) Major Awards and Honor Fellow, American Institute for Medical and Biological Engineering (AIMBE), 2021 Polymer Chemistry Pioneering Investigator, Royal Society of Chemistry, 2021 Fellow, American Association for the Advancement of Science (AAAS), 2020 Russell Research Award for the Science, Mathematics, and Engineering, University of South Carolina, 2020 Fellow, Division of Polymer Chemistry, American Chemical Society, 2018 Kavli Fellow, National Academy of Sciences, 2018 ACS Local Section Outreach Volunteer of the Year Award, 2018 Fellow, Royal Society of Chemistry (FRSC), 2017 Presidential Early Career Award for Scientists and Engineers (PECASE), 2017 South Carolina Governor’s Young Scientist Award, 2016 Distinguished Undergraduate Research Mentor Award, University of South Carolina, 2015 PMSE Young Investigator Award, American Chemical Society, 2014 Breakthrough Rising Star, University of South Carolina, 2013 Career Award, National Science Foundation, 2013 Thieme Chemistry Journal Award, 2013


I. Sustainable Biomass Chemistry and Biomaterials Renewable Chemicals and Materials. Research in my laboratory has addressed a pressing global problem on sustainability. We have conceptualized the transformation of a class of hydrocarbon-rich biomass into sustainable chemicals, bioplastics, elastomers and biomaterials. The biomass includes resin acids, plant oils, fatty acids, and terpenes (Figure 1). Our goals are to develop these sustainable materials that are comparable to or even better than petroleum counterparts. We aim to discover chemistry that could lead to atom-efficient, eco-friendly and economy-feasible processes for converting biomass into useful intermediates, monomers and polymers. We also tackle some long-lasting hurdles in utilizing this class of biomass. We explored macromolecular approaches to making mechanically robust resin acid-containing polymers by enabling ultra-high molecular weight or by designing pentablock copolymers to surpass the low chain entanglement. We have capitalized on the transesterification and amidation to prepare plant oil-derived polymers with glass transition temperature spanning over one hundred degree. By further instilling some unique functional groups from biomass with robust efficient chemistry (e.g. reversible Diels-Alder, triazolinedione click Chemistry), we have been able to make high performance elastomers via grafting random copolymers, and shape-memory materials via dynamic and permanent networks. In addition, we have transformed nano-lignin and cellulose nanocrystals into renewable polymers to achieve tough bioplastics. II: Organometallics and Metallopolymers Synthetic Methodology on Cationic Metallocene Derivatives and Polymers. We have led the accomplishment of a new platform of organometallic and metallopolymer chemistry based on cationic metallocenes (or metallocenium). We developed synthetic strategies to prepare metallocenium derivatives: nucleophilic addition and hydride abstraction (Figure 3). These reactions are highly dictated by the steric effect and electron-donating ability of nuceophiles as well as oxidation reagents for hydride abstraction. Systematic methdologies on the preparation of various monomers and controlled polymerization toward side-chain metallocenium-containing polymers have been established. III. Polymers for Dielectric Energy Storage We invest a small effort toward novel dielectric polymers. We have discovered a class of thiophene-containing polymers as high performance dielectric materials for energy storage. These polymers are significantly different from conventional dielectric polyvinylidene fluoride and polypropylene. These polymers can form ultra-small polarizable nanocrystalline domains embedded in an insulating matrix, leading to high dielectric permittivity, while maintaining low dielectric loss. Our recent efforts have led to novel nanocomposites based on thiophene polymer-grafted barium titanate nanoparticles that exhibit unprecedented dielectric properties (Figure 5). We have designed monomodal and biomodal polymer brushes from the BT nanoparticles via RAFT polymerization.


查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Cha, Y.; Zhu, T.; Sha, Y.; Lin, H.; Hwang, J.; Seraydarian,M.; Craig, S.*; Tang, C.* Mechanochemistry of Cationic Cobaltocenium Mechanophore. J. Am. Chem. Soc. 2021, accepted. Zhu, T.; Lu, Y.; Huang, K.*; Tang, C.* Metallopolymer as a Solid Electrolyte for Rechargeable Zn-Metal Alkaline Batteries. ACS Materials Lett. 2021, 3, 799-806. Yuan, L.; Tang, C.* Reactive bonds for closed-loop chemical processing of polyethylene mimics. Chem. 2021, 834-848. Wu, M.; Yuan, L.; Jiang, F.; Zhang, Y.; He, Y.; You, Y. Z.; Tang, C.*; Wang, Z.* Strong Autonomic Self-Healing Biobased Polyamide Elastomers. Chem. Mater. 2020, 32, 19, 8325–8332 Nan, J.; Zhang, G.; Zhu, T.; Wang, Z.; Wang, L.; Wang, H.; Chu, F.; Wang, C.*; Tang, C.* A Highly Elastic and Fatigue-Resistant Natural Protein-Reinforced Hydrogel Electrolyte for Reversible-Compressible Quasi-Solid-State Supercapacitors. Adv. Sci. 2020, 7, 2000587 Zhang Y.; Wang Z.; Kouznetsova T. B.; Sha Y.; Xu E.; Shannahan L.; Fermen-Coker M.; Tang C.;* Craig S. L.* Distal Conformational Locks on Ferrocene Mechanophores Guide Reaction Pathways for Increased Mechanochemical Reactivity. Nat. Chem. 2021, 13,56-62. Abd-El-Aziz, A. S.; Antonietti, M.; Barner-Kowollik, C.; Binder, W. H.; Böker, A.; Boyer, C.; Buchmeiser, M. R.; Cheng, S. Z. D.; D’Agosto, F.; Floudas, G.; Frey, H.; Galli, G.; Genzer, J.; Hartmann, L.; Hoogenboom, R.; Ishizone, T.; Kaplan, D. L.; Leclerc, M.; Lendlein, A.; Liu, B.; Long, T. E.; Ludwigs, S.; Lutz, J.-F.; Matyjaszewski, K.; Meier, M. A. R.; Müllen, K.; Müllner, M.; Rieger, B.; Russell, T. P.; Savin, D. A.; Schlüter, A. D.; Schubert, U. S.; Seiffert, S.; Severing, K.; Soares, J. B. P.; Staffilani, M.; Sumerlin, B. S.; Sun, Y.; Tang, B. Z.; Tang, C.; Théato, P.; Tirelli, N.; Tsui, O. K. C.; Unterlass, M. M.; Vana, P.; Voit, B.; Vyazovkin, S.; Weder, C.; Wiesner, U.; Wong, W.-Y.; Wu, C.; Yagci, Y.; Yuan, J.; Zhang, G., The Next 100 Years of Polymer Science. Macromol. Chem. Phys. 2020, 202000216. (Editorial) Zhang, T.; Dickerson, S.; Zhu, T; Tang, C, Wiskur, S., Polymer Compositions on Kinetic Resolutions of Secondary Alcohols Using Polymer-Supported Silyl Chlorides. Polym. Chem. 2020,11, 5011-5018 doi.org/10.1039/D0PY00747A. Zhu, T; Tang, C*, Crosslinked Metallo-Polyelectrolytes with Enhanced Flexibility and Dimensional Stability for Anion-Exchange Membranes. Polym. Chem. 2020, 11, 4542-4546. (invited for the pioneering investigators issue) Rahman, Md A.; Jui, M. S.; Bam, M.; Cha, Y.; Luat, E.; Alabresm, A.; Nagarkatti, M.; Decho, A.; Tang, C*, Facial Amphiphilicity-Induced Polymer Nanostructures for Antimicrobial Applications. ACS Appl. Mater. Interfaces 2020, 12, 21221-21230. Zhu, T.; Sha, Y.; Adabi. H.; Peng, X.; Cha, Y.; Dissanayake D. M. M.M.; Smith, D. M.; Vannucci, K. A.; Mustain, E. William; Tang, C.*, Rational Synthesis of Metallo-Cations Toward Redox- and Alkaline-Stable Metallo-Polyelectrolytes. J. Am. Chem. Soc. 2020, 142, 1083-1089. Zhu, T.; Zhang, J.*; Tang, C.*, Metallo-Polyelectrolytes: Correlating Macromolecular Architectures with Properties and Applications. Trends. Chem. 2020, 2, 227-240. Sha, Y.*; Zhu, T.; Rahman, M.A.; Cha, Y.; Hwang, J.; Luo, Z.; Tang, C.*, Synthesis of Site-specific Charged Metallopolymers via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization Polymer. Polymer. 2020, 187, 122095. Wang, Z.*; Ganewatta, M.S.; Tang, C.*, Sustainable Polymers from Biomass: Bridging Chemistry with Materials and Processing. Prog. Polym. Sci. 2019, 101, 101197. Rahman, Md A.; Sha, Y.; Jui, M. S.; Lamm, M.; Ma, Y.; Tang, C.*. Facial Amphiphilicity-Induced Self-Assembly (FAISA) of Amphiphilic Copolymers. Macromolecules, 2019, 52, 9526-9535. Lamm, M.E.; Song, L.; Wang, Z.; Lamm, B.; Fu, L.; and Tang, C*. A Facile Approach to Thermomechanically Enhanced Fatty Acid-Containing Bioplastics Using Metal-Ligand Coordination. Polym. Chem., 2019, 10, 6570-6579. Selected as Inside Front Cover. Lamm, M.E.; Song, L.; Wang, Z.; Rahman, Md. A.; Lamm, B.; Fu, L.; and Tang, C*. Tuning Mechanical Properties of Biobased Polymers by Supramolecular Chain Entanglement. Macromolecules,2019, 52, 8967-8975. Sha, Y.; Rahman, M. A.; Zhu, T.; Cha, Y.; McAlister, W.; Tang, C.*, ROMPI-CDSA: Ring-Opening Metathesis Polymerization Induced-Crystallization-Driven Self-Assembly of Metallo-Block Copolymers. Chem. Sci. 2019, 10, 9782-9787. Ganewatta, M. S.*; Lokupitiya, H. N.; Tang, C.*, Lignin Biopolymers in the Age of Controlled Polymerization. Polymers, 2019, 11, 1176. Rahman, M. A.; Cha, Y.; Yuan, L.; Pageni P.; Zhu, T.; Moumita, J.; Tang, C.*, Polymerization-Induced Self-assembly of Metallo-Polyelectrolyte Block Copolymers. J. Polym. Sci. A, 2020, 58, 77-83.