个人简介
学习与工作经历
最后学历:北京大学基础数学专业博士研究生
最高学位:理学博士
2002年春按青岛市特聘政策,由辽宁石油化工大学调入中国海洋大学工作
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
【1】Xinli Zhang,Yaqun Peng,Daxiong Piao*, Boundedness of solutions of quasi-periodic p-Laplacian equations with jumping nonlinearity,Acta Mathematica Sinica, English Series. Published online: July 15, 2022 https://doi.org/10.1007/s10114-022-0625-5
【2】Xinli Zhang, Yaqun Peng, Daxiong Piao*, Quasi-periodic solutions for the general semilinear Duffing equations with asymmetric nonlinearity and oscillating potential, SCIENCE CHINA Math., 64(2021), 931-946.
【3】张新丽,朴大雄*,次线性非对称 Duffing 方程的不变环面, 数学学报, 2021 ,v.64 (06) : 967-978.
【4】Yaqun Peng, Xinli Zhang, Daxiong Piao*, Boundedness of solutions of a quasi-periodic sublinear Duffing equations, Chinese Ann. Math., 42(1)(2021), 85-104.
【5】Yaqun Peng; Daxiong Piao*; Yiqian Wang, Longtime closeness estimates for bounded and unbounded solutions of non-recurrent Duffing equations with polynomial potentials, J. Differential Equations, 268(2020), no. 6, 513-540.
【6】Shuzheng Guo, Daxiong Piao*, Lyapunov behavior and dynamicallocalization for qusi-periodic CMV matrices, Linear Algebra and Its Applications, 606(2020), 68-89.
【7】Muhammad Afzal, Shuzheng Guo, Daxiong Piao* , On the reducibility of a class of linear almost periodic Hamiltonian systems, Qualitative Theory of Dynamical Systems, 18(2019), 723–738.
【8】Zhiguo Wang, Yiqian Wang, Daxiong Piao*, A new method for the boundedness of semilinear Duffing equations at resonance, Discrete Contin. Dyn. Syst., 36(2016), no.7, 3961-3991.
【9】Daxiong Piao , Xiang Sun, Boundedness of solutions for a class of impact oscillators with time-dependent polynomial potentials. Commun. Pure Appl. Anal., 13 (2014), no.2, 645-655.
【10】Daxiong Piao, Jiafan Sun, Besicovitch almost periodic solutions for a class of second order differential equations involving reflection of the argument, Electron. J. Qual. Theo. Diff. Equ., 2014 (41) :1-8.
【11】Xiao Ma, Daxiong Piao* ,Yiqian Wang, Boundedness for second order differential equations with jumping p-Laplacian and an oscillating term,Taiwanese J. Math. ,17 (2013), no. 6,1945-1966.
【12】Lei Jiao, Daxiong Piao* ,Yiqian Wang, Boundedness for the general semilinear Duffing equations via the twist theorem,J. Differential Equations, 252 (2012), no. 1, 91-113.
【13】Shilin Zhang, Zhen Gao, Daxiong Piao, Pseudo-almost periodic viscosity solutions of second-order nonlinear parabolic equations, Nonlinear Analysis, TAM, 2011 ,74 (18) :6970-6980.
【14】Kong, Lingju; Piao, Daxiong; Wang, Linshan. Positive Solutions for Third Order Boundary Value Problems with p-Laplacian, Results In Math., 2009 ,55 (1-2) :111-128.
【15】] Daxiong Piao, Wenling Li, Boundedness of solutions for reversible system via Moser's twist theorem,J. Math. Anal. Appl., 341(2008), no. 2, 1224-1235.
【16】Hongyan Zhou, Daxiong Piao, Hamiltonian long wave expansions for internal waves over a periodically varying bottom,Appl. Math. Mechanics-English Edition, 2008 ,29 (6) :745-756.
【17】Hongyan Zhou, Daxiong Piao, Pseudo Almost Periodic Solutions of Nonlinear Hyperbolic Equations with Piecewise Constant Argument, Northeastern Math. J., 2007 (06) :491-504.
【18】 Daxiong Piao, Pseudo almost periodic solutions for the systems of differential equations with piecewise constant argument [t + 1/2], Science in China. Series A, Mathematics, Physics, Astronomy, 2004, 47(1): p.31-38.
【19】Daxiong Piao,Periodic and almost periodic solutions of differential equations with reflection of the argument, Nonlinear Analysis, TAM, 57(2004), 633-637.
【20】Daxiong Piao,Pseudo almost periodic solutions for differential equations involving reflection of the argument, J. Korean Math. Soc., 2004 ,41 (4) :747-754.
【21】朴大雄,带逐段常变量[t+1/2]的微分方程组的伪概周期解,中国科学(A 辑),33 卷3 期,E220-226 , 2003年5月.
【22】Daxiong Piao,Almost periodic solutions of neutral differential equations with piecewise constant arguments, Acta Math. Sinica, English Series, 18:2(2002),263-276.
【23】朴大雄,带逐段常变量的时滞微分方程的伪概周期解,北京大学学报, 37:3(2001), 297-304.
【24】Daxiong Piao,Pseudo almost periodic solutions for the systems of differential equations with piecewise constant argument [t], Science in China , Series A , 44: 9(2001),1156-1161.
【25】朴大雄,带逐段常变量微分方程的概周期解,数学学报,42(1999), 749-756.
【26】Daxiong Piao, Rong Yuan, Pseudo almost periodic solutions of differential equations with piecewise constant argument, Chinese Ann. Math., 20B:5(1999), 489-494.