当前位置: X-MOL首页全球导师 国内导师 › 赵瑞杰

个人简介

上海交通大学,计算机学院(网络空间安全学院), 吴文俊人工智能荣誉博士班, 博士 研究概况 主要研究方向包括流量分析和 Web 安全,通过 结合人工智能技术赋能网络安全任务,解决网络安全领域中的一系列前沿挑战和落地需求。 近年来 主持国家自然科学基金青年基金、 江苏省自然科学基金青年基金等科研项目, 在网络安全与人工智能领域顶级会议( IEEE S&P 、 USENIX Security 、NeurIPS、 KDD、AAAI 、IJCAI 等) 和主要期刊(IEEE/ACM TON、IEEE TFS、IEEE TII等) 发表 高水平论文20余篇。在相关领域担任 NeurIPS、 KDD 、 WWW 、 ICLR 、 IEEE TIFS 、 IEEE TDSC 、 IEEE/ACM TON、电子学报、网络与空间安全学报、通信学报等多个国内外顶级会议及期刊审稿人。 流量分析的相关研究中,面向流量行为复杂多变、流量数据标注困难、流量数据隐私性强、边缘设备计算性能弱等诸多挑战,设计了强隐蔽性流量细粒度识别方法、流量数据自信息挖掘方法、跨域复杂流量协同训练方法、流量分析模型轻量化部署方法等解决方案。 Web 安全的相关研究中 ,面向 Web 安全研究中的网页指纹识别、验证码破解、w ebshell 检测三个关键场景开展研究。面向网页指纹隐藏机制,复杂验证码识别困难、 webshell 多样化混淆机制等诸多挑战,设计了网页指纹鲁棒识别方案、高效验证码求解器、代码语义感知的 webshell 检测等解决方案。 研究课题 承担国家自然科学基金青年基金(主持,在研,2026.01-2028.12),江苏省自然科学基金青年基金(主持,在研,2025.07-2028.06)等科研项目。 奖励与荣誉 2023.12 博士研究生国家奖学金 2023.12 《 信息网络安全 》期刊优秀审稿人 2022.12 上海交通大学张良起奖学金 2021.03 上海交通大学优秀毕业生

研究领域

流量分析:加密流量分析,匿名网络分析,网络入侵检测等 Web安全:网页指纹识别,Webshell检测,验证码破解等

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] M. Zhan, R. Zhao , X. Deng , Z. Xue, Q. Li, Z. Liu, G. Cheng, K. Xu, FlowRefiner: A Robust Traffic Classification Framework against Label Noise, in Conference on Neural Information Processing Systems (NeurIPS) , San Diego, United States, Dec. 2-7, 2025, pp. 1-12. ( 人工智能顶会 , CCF-A ) [2] X. Deng, R. Zhao , Y. Wang, M. Zhan, Z. Xue, Y. Wang, CountMamba: A Generalized Website Fingerprinting Attack via Coarse-Grained Representation and Fine-Grained Prediction, in IEEE Symposium on Security and Privacy (IEEE S&P) , San Francisco, United States, May 12-15, 2025, pp. 1-15. ( 四大安全顶会 , CCF-A ) [3] X. Liu, R. Zhao , M. Liu, L. Chen, L. Ying, Z. Han, Z. Xue, Detecting Malicious Encrypted Traffic With Multimodal Representations, in IEEE International Conference on Communications (ICC), Montreal, Canada, Jun. 8-12, 2025, pp.1-6. ( CCF-C ) [1] R. Zhao , M. Zhan, X. Deng, F. Li, Y. Wang, Y. Wang, G. Gui, Z. Xue, A Novel Self-Supervised Framework Based on Masked Autoencoder for Traffic Classification, IEEE/ACM Transactions on Networking (IEEE/ACM TON) , vol. 32, no. 3, pp. 2012-2025 , 2024 . ( 网络领域顶刊 , CCF-A ) [2] H. He, X. Lin, Z. Weng, R. Zhao , S. Gan, L. Chen, Y. Ji, J. Wang, Z. Xue, Code is not Natural Language: Unlock the Power of Semantics-Oriented Graph Representation for Binary Code Similarity Detection, in 33rd USENIX Security Symposium, Philadelphia, United States, Aug. 14-16, 2024, pp.1-18. ( 四大安全顶会 , CCF-A ) [3] W. Du, J. Li, Y. Wang, L. Chen, R. Zhao , J. Zhu, Z. Han, Y. Wang, Z. Xue, Vulnerability-oriented Testing for RESTful APIs, in 33rd USENIX Security Symposium, Philadelphia, United States, Aug. 14-16, 2024, pp.1-18. ( 四大安全顶会 , CCF-A ) [4] T. Yuan, Z. He, L. Dong, Y. Wang, R. Zhao , T. Xia, L. Xu, B. Zhou, F. Li, Z. Zhang, R. Wang, G. Liu , R-Judge: Benchmarking Safety Risk Awareness for LLM Agents, in Conference on Empirical Methods in Natural Language Processing (EMNLP) , Miami, United States , Nov. 12-16, 2024, pp.1-12 . ( CCF-B ) [5] Y. Wang, Z. Zhou, W. Bai, R. Zhao , X. Deng, CaptchaSAM: Segment Anything in Text-based Captchas, in IEEE International Conference on Trust, Security and Privacy in Computing and Communications ( TrustCom ), Sanya, China, Dec. 17-21, 2024, pp.1-7. ( CCF-C ) [1] R. Zhao , X. Deng, Y. Wang, Z. Yan, Z. Han, L. Chen, Z. Xue, Y. Wang, GeeSolver: A Generic, Efficient, and Effortless Solver with Self-Supervised Learning for Breaking Text Captchas, in IEEE Symposium on Security and Privacy (IEEE S&P) , San Francisco, United States, May 22-24, 2023, pp. 1-18. ( 四大安全顶会 , CCF-A ) [2] R. Zhao , M. Zhan, X. Deng, Y. Wang, Y. Wang, G. Gui, Z. Xue, Yet Another Traffic Classifier: A Masked Autoencoder Based Traffic Transformer with Multi-Level Flow Representation, in AAAI Conference on Artificial Intelligence (AAAI) , Washington, United States, Feb. 7-14, 2023, pp. 1-8. ( 人工智能顶会 , CCF-A ) [3] R. Zhao , Y. Huang, X. Deng, Y. Shi, J. Li, Z. Huang, Y. Wang, Z. Xue, A Novel Traffic Classifier with Attention Mechanism for Industrial Internet of Things, IEEE Transactions on Industrial Informatics (IEEE TII), vol. 19, no. 11, pp. 10799-10810 , 2023. ( Q1 - Top , IF: 11.65 ) [4] R. Zhao , Y. Wang, Z. Xue, T. Ohtsuki, B. Adebisi, G. Gui, Semisupervised Federated-Learning-Based Intrusion Detection Method for Internet of Things , IEEE Internet of Things Journal, vol. 10, no. 10, pp. 8645-8657 , 2023. ( Q1-Top , IF: 10.24 ) [5] Z. Yan, S. Li, R. Zhao , Y. Tian, Y. Zhao, DHBE: Data-free Holistic Backdoor Erasing in Deep Neural Networks via Restricted Adversarial Distillation, in ACM ASIA Conference on Computer and Communications Security (AsiaCCS), Melbourne, Australia, Jul. 10-14 , 2023 , pp. 1-15. ( CCF-C ) [1] R. Zhao , X. Deng, Z. Yan, J. Ma, Z. Xue, Y. Wang , MT-FlowFormer: A Semi-Supervised Flow Transformer for Encrypted Traffic Classification, in ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) , Washington, United States, Aug. 14-18, 2022, pp. 1-9. ( 人工智能顶会 , CCF-A ) [2] R. Zhao , X. Deng, Y. Wang, L. Chen, M. Liu, Z. Xue, Y. Wang, Flow Sequence-Based Anonymity Network Traffic Identification with Residual Graph Convolutional Networks, in IEEE/ACM International Symposium on Quality of Service (IWQoS) , Virtual Conference, Jun. 10-12, 2022, pp. 1-10. ( CCF-B ) [3] R. Zhao , G. Gui, Z. Xue, J. Yin, T. Ohtsuki, B. Adebisi, H. Gacanin, A Novel Intrusion Detection Method Based on Lightweight Neural Network for Internet of Things, IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9960-9972, 2022. ( Q1-Top , IF: 10.24 ) [4] R. Zhao , T. Tang, G. Gui, Z. Xue, A Lightweight Semi-supervised Learning Method Based on Consistency Regularization for Intrusion Detection, in IEEE International Conference on Communications (ICC) , Seoul, South Korea, May 16-20, 2022, pp. 1-6. ( CCF-C ) [5] X. Deng, R. Zhao , Y. Wang, L. Chen, Y. Wang, Z. Xue, 3E-Solver: An Effortless, Easy-to-Update, and End-to-End Solver with Semi-supervised Learning for Breaking Text-Based Captchas, in 31st International Joint Conference on Artificial Intelligence (IJCAI) , Vienna, Austria, Jul. 23-29, 2022, pp. 1-7. ( 人工智能顶会 , CCF-A ) [1] R. Zhao , J. Yin, Z. Xue, G. Gui, B. Adebisi, T. Ohtsuki, H. Gacanin, H. Sari, An Efficient Intrusion Detection Method Based on Dynamic Autoencoder, IEEE Wireless Communications Letters, vol. 10, no. 8, pp. 1707-1711, 2021. ( Q2 , IF: 5.28 ) [2] R. Zhao , Y. Huang, X. Deng, Z. Xue, J. Li, Z. Huang, Y. Wang, Flow Transformer: A Novel Anonymity Network Traffic Classifier with Attention Mechanism, in 17th International Conference on Mobility, Sensing and Networking (MSN), Exeter, UK, Dec. 13-15, 2021, pp. 1-8. ( CCF-C ) [3] R. Zhao et al., An Efficient and Lightweight Approach for Intrusion Detection Based on Knowledge Distillation, in IEEE International Conference on Communications (ICC), Montreal, Canada, Jun. 14-23, 2021, pp. 1-6. ( CCF-C ) [4] R. Zhao et al., A Novel Approach Based on Lightweight Deep Neural Network for Network Intrusion Detection, in IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, Mar. 29 - Apr. 1, 2021, pp. 1-6. ( CCF-C ) [5] X. Deng, R. Zhao , Z. Xue, M. Liu, L. Chen, Y. Wang, A Semi-supervised Deep Learning-Based Solver for Breaking Text-Based CAPTCHAs, in IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Shenyang, China, Oct. 20-22, 2021, pp. 1-6. ( CCF-C )

学术兼职

担任CCF互联网专委会执行委员,《电子学报》青年编委,NeurIPS、AAAI、KDD、WWW、IWQoS等会议 程序委员会成员, IEEE/ACM TON、 IEEE TIFS、IEEE TDSC、 IEEE TC、电子学报、网络与信息安全学报等期刊审稿人。

推荐链接
down
wechat
bug