当前位置: X-MOL首页全球导师 国内导师 › 刘道银

个人简介

刘道银,工学博士、教授、博士生导师。分别于2005年和2011年获东南大学学士和博士学位。2011年毕业后留校任教。2014至2015年在荷兰Delft理工大学访学。主要从事热能工程、多相流动和反应数值模拟、微纳米粉体材料制备等研究。主持国家自然科学基金项目、国家重点研发计划项目子课题、企事业研发项目等20余项。发表论文100余篇、编写教材2本、授权发明专利10余项,获省部级科技奖2项。 荣誉、奖励 2019年度教育部自然科学奖二等奖(第3);2019年度江苏省科学技术奖二等奖(第8);2022年江苏省工程热物理学会科学技术奖一等奖(第1)。

研究领域

热能工程 多相流动和反应数值模拟 微纳米粉体材料制备

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

2025年 [1] Zhang L, Zhang Z, Liu D. Growth characteristics of TiO2 films synthesized by fluidized bed atomic layer deposition. Particuology. 2025;104:1-16. [2] Zhang Y, Liu D, Ma J, Liang C, Chen X. Improvement of heat transfer and reaction performance of a K2CO3 fixed-bed energy storage reactor using topology optimization. Journal of Energy Storage. 2025;111:115443. [3] Zhang Z, Liu D. Simulation of atomic layer deposition on cohesive porous particles during fluidization by coupling CFD-DEM with particle surface reactions. Int J Heat Mass Transfer. 2025;249:127269. [4] Zhang Z, Zhang L, Tang H, Liu D. Coupled precursor mass transfer and atomic layer deposition in nanoparticle agglomerates: From primary to complex structures via CFD-DEM simulation. Chem Eng Sci. 2025;318:122157. [5] Fan Z, Liu D, Heynderickx GJ, Deivendran B, Guo J, Chen X. Interface-resolved simulation of droplet–particle interaction dynamics in multi-particle collisions. Phys Fluids. 2025;37. [6] Fan Z, Liu D, Heynderickx GJ, Deivendran B, Li X, Chen X. DNS-based study of binary wet particle collisions: Coupled modeling of agglomeration and separation. Powder Technol. 2025;464:121253. [7] Fan Z, Liu D, Li X, Cai J, Deivendran B, Heynderickx GJ. Resolving wet agglomeration and thermal coating dynamics in spray fluidized beds via CFD-DEM simulation. Chem Eng Sci. 2025;318:122158. [8] Guo J, Liu D, Fan Z, Ma J, Liang C, Chen X. Comparative study on compressive strength of coated particles prepared in a Wurster fluidized bed using different coating materials. Powder Technol. 2025;457:120928. [9] Guo J, Liu D, Ma J, Liang C, Chen X. Elucidating relationship between particle moisture and coating characteristics in a Wurster fluidized bed. Advanced Powder Technology. 2025;36:104868. [10] Liu W, Liu D, Tang H, Sun Z, Duan L. Synergistic enhancement of Z-scheme (SiO2/TiO2)/Bi2WO6 heterojunction by oxygen vacancies and interfacial electric field for efficient degradation of antibiotics. Sep Purif Technol. 2025;361:131462. 2024年 [1] Zhang Z, Liu D. A finite-discrete element model for simulating collision and fragmentation of nanoparticle agglomerates. AIChE J. 2024;70:e18275. [2] Xiong L, Liu D, Duan L, Sun Z, Chen H, Liang C. Mass-producible γ-Al2O3/CaCO3 core–shell thermochemical energy storage particles by fluidized bed spray granulation. Chemical Engineering Journal. 2024;495:153688. [3] Wu Y, Liu D, van Wachem BGM, van Ommen JR. Simulation of Nanoparticle Agglomerate Fluidization Based on Continuum Theory of Cohesive Particles. Ind Eng Chem Res. 2024;63:7453-64. [4] Liu W, Zhang Z, Liu D. Comparison of SiO2/TiO2 photocatalysts with different thicknesses synthesized by fluidized bed atomic layer deposition. Powder Technol. 2024;438:119613. [5] Liu W, Liu D, Zhang Z, Sun Z. Synthesis of core-shell nanostructured SiO2/TiO2 photocatalysts via atomic layer deposition in a fluidized bed with central tube. Particuology. 2024;91:19-28. [6] Guo J, Liu D, Ma J, Liang C, Chen X. Particle residence time distribution and axial dispersion coefficient in a pressurized circulating fluidized bed by using multiphase particle-in-cell simulation. Chin J Chem Eng. 2024;69:167-76. [7] Guo J, Liu D, Ma J, Liang C, Chen X. Particle circulation and coating in a Wurster fluidized bed under different geometries. Powder Technol. 2024;433:119223. [8] Fan Z, Liu D, Shen X, Liu N, Ma J, Chen X. Comparison of Newtonian and glycerol-water solution-based SiO2 nanofluid droplets impacting on heated spherical surfaces. Int J Heat Mass Transfer. 2024;228:125662. [9] Fan Z, Liu D, Liang C, Chen X. Comprehensive study on collision patterns of viscous droplets impacting on a heated particle. Experimental Thermal and Fluid Science. 2024;158:111259. [10] Fan Z, Liu D, Liang C, Chen X. Numerical simulation of collision dynamics between a dry particle and a liquid-coated wet particle. Powder Technol. 2024;434:119308. [11] Fan Z, Liu D, Liang C, Chen X. Numerical simulation of mid-air collisions between droplets and particles: An examination of particle forces and kinetic energy dissipation. Powder Technol. 2024;432:119124. 2023年 [1] Zhang L, Liu D, Wu X, Zhang W, Feng H. Enhancing fluidization quality of nanoparticle agglomerates by combining vibration, stirring and jet assistances. Powder Technol. 2023;430:118996. [2] Liu W, Tang H, Liu D. Combining density functional theory and CFD-PBM model to predict TiO2 nanoparticle evolution during chemical vapor deposition. Chemical Engineering Journal. 2023;454:140174. [3] Liu D, Liu W, Ma J, Liang C, Chen X. Investigation of CO2 Capture in Three-Dimensional Full-Loop Integrated Bubbling-Transport Bed Adsorber. Ind Eng Chem Res. 2023;62:17691-700. [4] Liu D, Guo J, Ma J, Liang C, Chen X. Effects of Seed Particle Properties on Coating in a Wurster Fluidized Bed. Ind Eng Chem Res. 2023;62:15687-98. [5] Li H, Liu D, Ma J, Chen X. Influence of cycle time distribution on coating uniformity of particles in a spray fluidized bed by using CFD-DEM simulations. Particuology. 2023;76:151-64. [6] Geng P, Ma J, Chen X, Liu D, Pan S, Liang C. Collision regimes and dynamic behaviors of a viscous droplet impacting on a spherical particle at high temperatures. Phys Fluids. 2023;0:null. [7] Fan Z, Liu D, Pan S, Ma J, Chen X. Spreading dynamics of the viscous droplet impacting on a spherical particle. Phys Fluids. 2023;35:023311. [8] Dong Z, Liu D, Liang C, Hao M, Dai T, Ding H. Optimization of film cooling arrays on a gas turbine vane by using an integrated approach of numerical simulation and parameterized design. Applied Thermal Engineering. 2023;219:119464. [9] Chen B, Liu D, Liu M. Combining Langevin dynamics and CFD-PBM model to predict TiO2 nanoparticle evolution during aerosol synthesis. Applied Thermal Engineering. 2023;230:120702. [10] Chen B, Liu D, Chen Z, Liu M. Langevin dynamics simulation and collision frequency modification in population balance model of nanoparticle coagulation during simultaneous agglomeration and sintering. J Aerosol Sci. 2023;174:120702. [11] Cai J, Xu J, You M, Liang C, Liu D, Ma J, et al. Flow characteristics and pattern transition of different pipe diameters in pneumatic conveying for gasifier. Chem Eng Res Des. 2023;189:282-95. [12] 刘道银, 范志恒, 马吉亮, 陈晓平. 湿颗粒倾斜碰撞恢复系数的直接数值模拟. 化工学报. 2023;74:4063-73. [13] 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟. 化工学报. 2023;74:2351-62. 2022年 [1] Xiong MJ, Liu DY, Chen XP, Ma JL, Ma LK. Characteristics of a Methane Jet Flame in Elevated Pressure and Oxy-Fuel Atmosphere Using Large Eddy Simulation with Tabulated Chemistry. Combust Sci Technol. 2022;194:700-20. [2] Wang C, Liu D, Ma J, Liang C, Chen X. Characterization of coating shells in a Wurster fluidized bed under different drying conditions and solution viscosities. Powder Technol. 2022;411:117914. [3] Shao L, Liu D, Ma J, Chen X. Experimental characterization of the effect of liquid viscosity on collisions between a multi-component droplet and a heated particle. Chem Eng Sci. 2022;261:117968. [4] Shao L, Liu D, Ma J, Chen X. Normal collision between partially wetted particles by using direct numerical simulation. Chem Eng Sci. 2022;247:117090. [5] Liu W, Liu D, Zhang Y, Li B. Numerical investigation of particle size distribution, particle transport and deposition in a modified chemical vapor deposition process. Powder Technol. 2022;407:117616. [6] Liu W, Liu D, Liu M. Effects of process parameters on preparation of Ti@SiO2 particles during fluidized bed chemical vapor deposition via design of experiments. Chem Eng Res Des. 2022;187:425-33. [7] Li H, Liu D, Ma J, Chen X. Simulation of a Wurster fluidized bed by CFD–DEM with a cohesive contact model. Chem Eng Res Des. 2022;177:157-166. [8] Feng Z, Liu D, Zhang W, Feng H, Ruud van Ommen J. Elutriation and agglomerate size distribution in a silica nanoparticle vibro-fluidized bed. Chemical Engineering Journal. 2022;434:134654. 2021年 [1] Wu Y, Liu D, Hu J, Ma J, Chen X. Comparative study of two fluid model and dense discrete phase model for simulations of gas-solid hydrodynamics in circulating fluidized beds. Particuology. 2021;55:108-17. [2] Ma JL, Liu DY, Chen XP, Liang C, van Ommen JR. X-ray tomography analysis of bubbles and slugs in a fluidized bed with inter-particle force. Int J Multiphase Flow. 2021;145. [3] Hu J, Liu D, Liang C, Ma J, Chen X, Zhang T. Solids flow characteristics and circulation rate in an internally circulating fluidized bed. Particuology. 2021;54:69-77. [4] Hu J, Liu D, Li H, Liang C, Chen X. Experimental study of the solid circulation rate in a pressurized circulating fluidized bed. Particuology. 2021;56:207-14. [5] 赵之端, 赵蒙, 刘道银, 梁财, 马吉亮, 陈晓平. 振动和搅拌对SiO2纳米颗粒聚团流化的影响对比研究. 工程热物理学报. 2021;42:136-42. [6] 刘道银, 王利民. 计算流体力学基础与应用: 东南大学出版社; 2021.

推荐链接
down
wechat
bug