近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Chen, W., and Zhou, Y.* (2025) Make Domain Shift a Catastrophic Forgetting Alleviator in Class-Incremental Learning. In Proceedings of the AAAI Conference on Artificial Intelligence.
2. Yao, Y., Wu, R., Zhou, Y. * , & Zhou, T. (2025) Continual Retinal Vision-Language Pre-training upon Incremental Imaging Modalities. In International Conference on Medical Image Computing and Computer-Assisted Intervention ( MICCAI ). Cham: Springer Nature Switzerland.
3. Huang, K., Zhou, Y., Fu, H., Zhang, Y., Gong, C., & Zhou, T. (2025) Text-driven Multiplanar Visual Interaction for Semi-supervised Medical Image Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention ( MICCAI ). Cham: Springer Nature Switzerland.
4. Hu, J., Zhou, T., Huang, K., Zhou, Y. , Zhang, H., Fan, Bo., & Fu, H. (2025) Uncertainty-guided Prototype Reliability Enhancement Network for Few-shot Medical Image Segmentation. IEEE Transactions on Medical Imaging , DOI: 10.1109/TMI.2025.3621452.
5. Ni, Z., Fu, A., Zhou, Y.* (2025) FREAK: Frequency-moduled High-fidelity and Real-time Audio-driven Talking Portrait Synthesis. In ACM International Conference on Multimedia Retrieval ( ICMR ).
6. Fu, A., Ni, Z., Zhou, Y.* (2025) Dual Audio-Centric Modality Coupling for Talking Head Generation. In International Conference on Virtual Reality and Visualization ( ICVRV ).
7. Huang, K., Zhou, T., Fu., H., Zhang, Y., Zhou, Y. , Gong, C., & Liang, D. (2025) Learnable Prompting SAM-induced Knowledge Distillation for Semi-supervised Medical Image Segmentation. IEEE Transactions on Medical Imaging , DOI: 10.1109/TMI.2025.3530097.
8. Zhou, T., Fu, H., Zhang, Y., Zhou, Y. , & Wu, X. (2025) Uncertainty-aware Cross-training for Semi-supervised Medical Image Segmentation. IEEE Transactions on Image Processing , DOI: 10.1109/TIP.2025.3599783.
9. Lu, Z., Zhang, Y., Zhou, Y. , Wu, Y., & Zhou, T. (2024) Domain-Interactive Contrastive Learning and Prototype-Guided Self-Training for Cross-Domain Polyp Segmentation. IEEE Transactions on Medical Imaging , DOI: 10.1109/TMI.2024.3443262.
10. Wu, R., Zhang, C., Zhang, J., Zhou, Y.* , Zhou, T., & Fu, H. (2024) MM-Retinal: Knowledge-Enhanced Foundational Pretraining with Fundus Image-Text Expertise. In International Conference on Medical Image Computing and Computer-Assisted Intervention ( MICCAI ). Cham: Springer Nature Switzerland.
11. Xie, Y., Zhou, T., Zhou, Y.* , & Chen, G. (2024) SimTxtSeg: Weakly-Supervised Medical Image Segmentation with Simple Text Cues. In International Conference on Medical Image Computing and Computer-Assisted Intervention ( MICCAI ). Cham: Springer Nature Switzerland.
12. Zhao, Y., Zhou, Y. , Zhang, Y., Wu, Y., & Zhou, T. (2024) TextPolyp: Point-supervised Polyp Segmentation with Text Cues. In International Conference on Medical Image Computing and Computer-Assisted Intervention ( MICCAI ). Cham: Springer Nature Switzerland.
13. Zhou, T., Zhou, Y. , Li, G., Chen, G., & Shen, J. (2024) Uncertainty-aware Hierarchical Aggregation Network for Medical Image Segmentation. IEEE Transactions on Circuits and Systems for Video Technology . DOI:10.1109/TCSVT.2024.3370685.
14. Luo, S., Chen, W., Wu, R., Geng, S., Zhou, Y.* , et al. (2024) Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives. IEEE Transactions on Intelligent Vehicles . DOI: 10.1109/TIV.2024.3406372.
15. Gu, Y., Zhou, T., Zhang, Y., Zhou, Y. , He, K., Gong, C., and Fu, H. (2024). Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation. Pattern Recognition , DOI: 10.1016/j.patcog.2024.110962.
16. Zhou, T., Zhang, Y., Chen, G., Zhou, Y. , Wu, Y., and Fan, D. (2024). Edge-aware feature aggregation network for polyp segmentation. Machine Intelligence Research . http://doi.org/10.1007/s11633-023-1479-8.
17. Lai, Y., Zhou, Y. * , Liu, X., & Zhou, T. (2024). Memory-Assisted Sub-Prototype Mining for Universal Domain Adaptation. In Proceedings of the International Conference on Learning Representations (ICLR) .
18. Huang, L., Qin, J., Zhou, Y. , Zhu, F., Liu, L., & Shao, L. (2023). Normalization techniques in training dnns: Methodology, analysis and application. IEEE Transactions on Pattern Analysis and Machine Intelligence , 45(8), 10173–10196.
19. Liu, X., Zhou, Y.* , Zhou T., & Qin J. (2023). Self-Paced Learning for Open-Set Domain Adaptation[J]. Journal of Computer Research and Development ( 计算机研究与发展 ) , 60(8): 1711-1726. doi: 10.7544/issn1000-1239.202330210. [ Outstanding Paper Award]
20. Li, Y., Zhou, T., He, K., Zhou, Y. , & Shen, D. (2023). Multi-scale Transformer Network with Edge-aware Pre-training for Cross-Modality MR Image Synthesis. IEEE Transactions on Medical Imaging , 42(11), 3395-3407.
21. Zhou, T., Zhou, Y. , He, K., Gong, C., Yang, J., Fu, H., & Shen, D. (2023). Cross-level Feature Aggregation Network for Polyp Segmentation. Pattern Recognition , 140, 109555.
22. Yang, H., Zhou, T., Zhou, Y. , Zhang, Y., & Fu, H. (2023). Flexible Fusion Network for Multi-modal Brain Tumor Segmentation. IEEE Journal of Biomedical and Health Informatics , 27(7), 3349-3359.
23. Zhou, T., Fan, D., Chen G., Zhou, Y. , & Fu , H. (2023). Specificity-preserving RGB-D saliency detection. Computer Visual Media Journal , 9(2), 297-317. [ Honorable Mention Award ]
24. Zhou, T., Zhou, Y. , Gong, C., Yang, J., & Zhang, Y. (2022). Feature aggregation and propagation network for camouflaged object detection. IEEE Transactions on Image Processing , 31, 7036-7047.
25. Zhou, H., Huang, Y., Li, Y., Zhou, Y.* , & Zheng, Y. (2022). Blind Super-Resolution of 3D MRI via Unsupervised Domain Transformation. IEEE Journal of Biomedical and Health Informatics , 27(3), 1409-1418.
26. Zhou, Y. , Bai, S., Zhou, T., Zhang, Y., & Fu, H. (2022). Delving into Local Features for Open-Set Domain Adaptation in Fundus Image Analysis. In International Conference on Medical Image Computing and Computer-Assisted Intervention ( MICCAI ) (pp. 682-692). Cham: Springer Nature Switzerland.
27. Huang, L., Zhou, Y. , Wang, T., Luo, J., & Liu, X. (2022). Delving into the estimation shift of batch normalization in a network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) (pp. 763-772).
28. Zhou, Y. , Huang, L., Zhou, T., & Sun, H. (2022). Combating medical noisy labels by disentangled distribution learning and consistency regularization. Future Generation Computer Systems , 141, 567-576.
29. Zhou, Y. , Wang, B., He, X., Cui, S., & Shao, L. (2022). DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images. IEEE Journal of Biomedical and Health Informatics , 26(1), 56-66.
30. Zhou, Y. , Huang, L., Zhou, T., & Shao, L. (2021). CCT-Net: category-invariant cross-domain transfer for medical single-to-multiple disease diagnosis. In Proceedings of the IEEE/CVF International Conference on Computer Vision ( ICCV ) (pp. 8260-8270).
31. Zhou, Y. , Huang, L., Zhou, T., Fu, H., & Shao, L. (2021). Visual-textual attentive semantic consistency for medical report generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision ( ICCV ) (pp. 3985-3994).
32. Zhou, T., Fu, H., Chen, G., Zhou, Y. , Fan, D. P., & Shao, L. (2021). Specificity-preserving RGB-D saliency detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision ( ICCV ) (pp. 4681-4691).
33. Zhou, Y. , Zhou, T., Zhou, T., Fu, H., Liu, J., & Shao, L. (2021). Contrast-attentive thoracic disease recognition with dual-weighting graph reasoning. IEEE Transactions on Medical Imaging , 40(4), 1196-1206.
34. Huang, L., Zhou, Y. , Liu, L., Zhu, F., & Shao, L. (2021). Group whitening: Balancing learning efficiency and representational capacity. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) (pp. 9512-9521).
35. Zhou, Y. , Huang, L., Zhou, T., & Shao, L. (2021). Many-to-one distribution learning and k-nearest neighbor smoothing for thoracic disease identification. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 1, pp. 768-776).
36. Li, X., Zhou, T., Li, J., Zhou, Y. , & Zhang, Z. (2021). Group-wise semantic mining for weakly supervised semantic segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 3, pp. 1984-1992).
37. Zhou, Y. , Wang, B., Huang, L., Cui, S., & Shao, L. (2020). A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Transactions on Medical Imaging , 40(3), 818-828.
38. Fan, D. P., Zhou, T., Ji, G. P., Zhou, Y. , Chen, G., Fu, H., ... & Shao, L. (2020). Inf-net: Automatic covid-19 lung infection segmentation from ct images. IEEE Transactions on Medical Imaging , 39(8), 2626-2637.
39. Huang, L., Zhao, L., Zhou, Y. , Zhu, F., Liu, L., & Shao, L. (2020). An investigation into the stochasticity of batch whitening. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR) (pp. 6439-6448).
40. Zhou, T., Wang, S., Zhou, Y. , Yao, Y., Li, J., & Shao, L. (2020). Motion-attentive transition for zero-shot video object segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 07, pp. 13066-13073).
41. Zhou, Y. , He, X., Cui, S., Zhu, F., Liu, L., & Shao, L. (2019). High-resolution diabetic retinopathy image synthesis manipulated by grading and lesions. In International Conference on Medical Image Computing and Computer-Assisted Intervention ( MICCAI ) (pp. 505-513). Cham: Springer International Publishing.
42. He, X., Zhou, Y. , Wang, B., Cui, S., & Shao, L. (2019). Dme-net: Diabetic macular edema grading by auxiliary task learning. In International Conference on Medical Image Computing and Computer-Assisted Intervention ( MICCAI ) (pp. 788-796). Cham: Springer International Publishing.
43. Zhou, Y. , He, X., Huang, L., Liu, L., Zhu, F., Cui, S., & Shao, L. (2019). Collaborative learning of semi-supervised segmentation and classification for medical images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) (pp. 2079-2088).
44. Huang, L., Zhou, Y. , Zhu, F., Liu, L., & Shao, L. (2019). Iterative normalization: Beyond standardization towards efficient whitening. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) (pp. 4874-4883).
45. Wei, Z., Zhang, J., Liu, L., Zhu, F., Shen, F., Zhou, Y. , ... & Shao, L. (2019). Building detail-sensitive semantic segmentation networks with polynomial pooling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) (pp. 7115-7123).
46. Zhou, Y. , & Shao, L. (2018). Viewpoint-aware attentive multi-view inference for vehicle re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition ( CVPR ) (pp. 6489-6498).
47. Zhou, Y. , & Shao, L. (2018). Vehicle re-identification by adversarial bi-directional lstm network. In 2018 IEEE Winter Conference on Applications of Computer Vision ( WACV ) (pp. 653-662). IEEE.
48. Zhou, Y. , & Shao, L. (2018). Vehicle re-identification by deep hidden multi-view inference. IEEE Transactions on Image Processing , 27(7), 3275-3287.
49. Liu, L., Zhou, Y. , & Shao, L. (2018). Deep action parsing in videos with large-scale synthesized data. IEEE Transactions on Image Processing , 27(6), 2869-2882.
50. Zhou, Y. , Liu, L., Shao, L., & Mellor, M. (2017). Fast automatic vehicle annotation for urban traffic surveillance. IEEE Transactions on Intelligent Transportation Systems , 19(6), 1973-1984.
51. Zhou, Y. , & Shao, L. (2017). Cross-view GAN based vehicle generation for re-identification. In British Machine Vision Conference ( BMVC ) (Vol. 1, pp. 1-12).
52. Liu, L., Zhou, Y. , & Shao, L. (2017). Dap3d-net: Where, what and how actions occur in videos?. In 2017 IEEE International Conference on Robotics and Automation ( ICRA ) (pp. 138-145). IEEE.
53. Zhou, Y. , Liu, L., Shao, L., & Mellor, M. (2016). DAVE: A unified framework for fast vehicle detection and annotation. In Computer Vision– ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14 (pp. 278-293). Springer International Publishing.