当前位置: X-MOL首页全球导师 国内导师 › 高洪俊

个人简介

高洪俊, 二级教授, 博士生导师, 2006享受政府特殊津贴专家。主要从事随机偏微分方程和随机动力系统的理论和应用研究。近期的研究兴趣聚焦在随机动力学,大偏差估计,随机稳定性及其在物理、金融领域中的应用等。曾赴巴西科学计算国家实验室、新加坡国立大学数学系、伊利诺伊理工学院、美国明尼苏达大学数学及其应用研究所、香港中文大学数学研究所、加拿大约克大学、日本京都大学、北海道大学、美国加州洛杉矶分校纯粹与应用数学研究所、美国杨百翰大学数学系和德国Jena大学数学与统计系等高校和研究机构进行学术交流和合作。 7/1994—7/1996: 北京应用物理与计算数学研究所物理博士后流动站从事研究工作;8/1996—7/1999: 北京应用物理与计算数学研究所,计算物理实验室工作,1996年8月晋升为副研究员;7/1999—1/2000: 新加坡国立大学数学系,访问研究员;1/2000—6/2001: 南京师范大学数学系,副研究员;6/2001—3/2021: 南京师范大学数学科学学院,教授;3/2021—现在: 东南大学数学学院, 教授。 9/1984--7/1988: 苏州大学数学系,1988年7月获学士学位;9/1988--6/1991: 苏州大学数学系,1991年6月获理学硕士学位;9/1991--7/1994: 北京应用物理与计算数学研究所,1994年7月获理学博士学位。

研究领域

随机偏微分方程和随机动力系统的理论和应用研究 随机动力学 大偏差估计 随机稳定性及其在物理、金融领域中的应用

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1 . H. Gao and J . E . M . Rivera, Global existence and decay for the semilinear thermoelastic contact problem, J. Differential Equations , Vol 186(2002), 52--68. 2 . H. Gao and C. Bu, Dirichlet inhomogeneous boundary value problem for the n+1 complex Ginzburg-Landau equation, J. Differential Equations, 198 (2004), 176--195. 3 . C. Sun, H. Gao, J. Duan and B. Schmalfuss, Rare Events in the Boussinesq System with Fluctuating Dynamical Boundary Conditions, J. Differential Equations , 248 (2010), no. 6, 1269–1296. 4. F. Guo, H. Gao and Y. Liu, Existence of permanent and breaking waves for the periodic Degasperis- Procesi equation with linear dispersion, Journal für reine und angewandte Mathematik, Volume 2011, Issue 657, Pages 199–223. 5 . Y.Chen , H. Gao and B. Guo, Well posedness for stochastic Camassa-Holm equation, J. Differential Equations , 253( 2012), 2353–2379. 6 . F. Guo , H. Gao and Y. Liu, On the wave-breaking phenomena for the two-component Dullin- Gottwald-Holm system, J. Lond. Math. Soc. (2) , 86 (2012), no. 3, 810–834. 7. H. Gao, F. Liang and B. Guo , Stochastic wave equations with nonlinear damping and source terms, Infinite Dimensional Analysis, Quantum Probability and Related Topics , 16 (2013), no. 2, 1350013, 29 pp. 8 . Y. Han , F. Guo and H. Gao, On solitary waves and wave-breaking phenomena for a generalized two-component integrable Dullin-Gottwald-Holm system, J. Nonlinear Sci. , 23 (2013), no. 4, 617–656. 9 . H. Gao, M. J. Garrido-Atienza and B. Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion, SIAM J. Math. Anal., 46 (2014), no. 4, 2281–2309. 10. J. Fan, H. Gao and B. Guo, Uniqueness of Weak Solutions to the 3D Ginzburg– Landau Superconductivity Model , International Mathematics Research Notices , 2015(2015), 1239-12. 11 . Y. Chen and H. Gao, The Cauchy problem for the Hartree equations under random influences, J. Differential Equations , 259(2015), 5192-5219. 12. L. Fan, H. Gao and Y. Liu, On the rotation-two-component Camassa-Holm system modelling the equatorial water waves, Advances in Mathematics, 291 (2016), 59–89. 13.Y. Chen and H. Gao, Well-posedness and Large Deviations of the Stochastic Modified Camassa-Holm Equation , Potential Analysis , 45 (2016), 331–354 . 14. L. Fan and H. Gao, Instability of equatorial edge waves in the background flow , Proc eed ings of the AMS , 145 (2017), 765–778. 15. Y. Chen and H. Gao, Well-posedness and large deviations for a class of SPDEs with Levy noise, J. Differential Equations , 263(2017), 5216-5252. 16 .M. Chen, L. Fan, H. Gao ang Y. Liu, B reaking waves and solitary waves to the Rotation-Two- Component Camassa-Holm System, S IAM Journal on Mathematical Analysi s, 49(2017), 3573-3602. 17. Lin Lin and H. Gao, A Stochastic Generalized Ginzburg- Landau Equation Driven by Jump Noise, J. Theoretical Probab. , 32(2019), 460–483. 18. G. Lv, H. Gao, J. Wei and J. Wu, BMO and Morrey-Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations, J. Differential Equations , 266(2019), 2666–2717. 19. H. Gao and H. Liu, Well-posedness and invariant measures for a class of stochastic 3D Navier-Stokes equations with damping driven by jump noise, J. Differential Equations , 267 (2019), 5938–5975. 20. J. Wei, J. Duan, H. Gao and G. Lv, Stochastic strong solution for stochastic transport equations, Stochastics and Partial Differential Equations: Analysis and Computations , 9 (2021), no. 1, 105–141. 21. H. Gao, M. J. Garrido-Atienza, A. Gu, K. Lu and B. Schmalfuss, Rough path theory to approximate random dynamical systems, SIAM J. Appl. Dynamical Sys., 20 (2021), 997–1021. 22. B. Wang and H. Gao, Exponential stability of solutions to stochastic differential equations driven by G-Levy process, Appl. Math. Optim., 83 (2021), 1191–1218. 23. Y. Chen, J. Duan and H. Gao, Wave-breaking and moderate deviations of the stochastic Camassa-Holm with pure jump noise, Physica D, 424 (2021), Paper No. 132944, 12 pp. 2 4. H. Gao and Y. Shi, Averaging principle for a stochastic coupled fast-slow atmosphere-ocean model, J. Diff erential Equations , 298 (2021), 248–297. 25. L. Fan, H. Gao and H. Li, On the Geophysical Green-Naghdi system, J. Nonlinear Sci. , 32(2022), no.2, Paper No. 21. 26. Q. Xiao and H. Gao, Stochastic attractor bifurcation of the one-dimensional Swift-Hohenberg equation with multiplicative noise, J. Differential Equations , 336 (2022), 565–588. 27. L. Fan, R. Liu and H. Gao, Hamiltonian model for coupled surface and internal waves over currents and uneven bottom, Phys. D , 443(2023), Paper No. 133558, 18pp. 28. Q. Cao, H. Gao and B. Schmalfuss, Wong-Zakai type approximations of rough random dynamical systems by smooth noise, J. Differential Equations , 358 (2023), 218–255. 29. Y. Chen, J. Duan and H. Gao, Well-posedness and wave-breaking for the stochastic rotation-two-component Camassa–Holm system , Ann Appl Probab , 34(2023), 2734-2785.

学术兼职

Stochastics and Dynamics 编委 (SCIE) , 2014.01-- http://www.worldscientific.com/worldscinet/sd BULLETIN of the Malaysian Mathematical Sciences Society 编委 (SCIE) , 2023.07-- https://www.springer.com/40840 Applicable Analysis 编委 (SCIE), 2024.11-- https://www.tandfonline.com/journals/gapa20/about-this-journal#editorial-board Mathmatics Open 编委 , 2023.02-- https://www.worldscientific.com/page/mo 江苏省工业与应用数学学会理事

推荐链接
down
wechat
bug