当前位置: X-MOL首页全球导师 国内导师 › 卢泓方

个人简介

卢泓方,男, 1991 年生,江苏宜兴人,博士,硕士生导师。 主要从事能源储运技术研究,以第一 / 通讯在 Nature Cities 、 npj Materials Degradation 、 Scientific Data 及领域内的专业期刊发表 SCI 论文 50 余篇, Google Scholar 被引 4000 余次( H 指数为 30,截至2025.4 ), 1 篇论文入选 ESI 热点论文, 6 篇论文入选 ESI 高被引论文。出版英文专著《 Pipeline Inspection and Health Monitoring Technology 》并作为美国普渡大学的研究生教材。主持国家自然科学基金、江苏省自然科学基金、中国科学院团队人才项目、重点实验室开放基金、企业委托横向多项。参与国家重点研发计划项目 1 项(项目骨干)、江苏省前沿引领技术基础研究重大项目 1 项(项目骨干)。担任 ASCE Journal of Pipeline Systems Engineering and Practice ( SCI Q3 )副主编; Journal of Pipeline Science and Engineering ( SCI Q1 )编委; Tunnelling and Underground Space Technology ( SCI Q1 )客座编辑; Structural Durability & Health Monitoring ( EI )客座编辑; Journal of Dynamic Disasters 副主编;《天然气工业》( EI )和《油气储运》(中文核心)第一、二届青年编委;国家自然科学基金函评专家;中国石油学会石油储运专业委员会青年工作部委员;第十五届石油天然气管道安全 ( 氢能储运 ) 国际会议大会执行主席;江苏省复合材料学会青年工作委员会委员。连续三年入选全球前 2% 顶尖科学家“年度科学影响力排行榜”( 2024 年榜单全球 67983 名、中国能源领域 386 名、环境工程领域 65 名),获得 2024 年国际先进材料协会( IAAM )科学家奖章、 2021 年“科创江苏”创新创业大赛新材料领域一等奖、两次获得 ASCE Editor’s Choice Award 、 Journal of Zhejiang University-SCIENCE A 期刊 2022 年度最佳论文奖。 教育经历 2017.3-2020.5 美国路易斯安纳理工大学,土木工程,哲学博士(国家公派),导师: Dr. Tom Iseley 2013.9-2016.6 西南石油大学,油气储运工程(教育部 A+ 学科),硕士 2009.9-2013.6 西南石油大学,油气储运工程(教育部 A+ 学科),学士

研究领域

1. 能源储运技术 2. 能源管道安全评估与修复 3. 人工智能在能源领域应用

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Lu, H. , Xi, D., Xiang, Y., Su, Z. & Cheng, Y. F. (2025). Vehicle-canine collaboration for urban pipeline methane leak detection. Nature Cities . DOI: 10.1038/s44284-024-00183-w 2. Lu, H. , Liu, C., Zou, X., Peng, H., Ni, H., & Iseley, T. (2025). Prediction of construction traction force for corroded pipeline rehabilitation using multilayer composite liners. ASCE Journal of Pipeline Systems Engineering and Practice, 16(2), 04024080. ( ASCE 期刊 ) 3. Lu, H. , Matthews, J., Chae, A., Shou, K. J., Ariaratnam, S., Fang, H., Ma, B., & Iseley, T. (2024). Advancing underground infrastructure: trenchless technologies and smart asset management in the digital age. Tunnelling and Underground Space Technology , 106130. ( JCR Q1 ) 4. Xia, Z., Xu, Z. D., Lu, H.* , Peng, H., Zang, X., Liu, X., & Wang, X. (2024) Modeling and assessment of hydrogen-blended natural gas releases from buried pipeline. International Journal of Hydrogen Energy , 90, 230-245. ( JCR Q1 ) 5. Wang, Q. & Lu, H.* (2024). A novel stacking ensemble learner for predicting residual strength of corroded pipelines. npj Materials Degradation , 8, 87. ( JCR Q1 ) 6. Peng, H., Xu, Z. D., Lu, H.* , Xi, D., Xia, Z., Yang, C., & Wang, B. A review of underground transport infrastructure monitoring in CCS: Technology and Engineering Practice. Process Safety and Environmental Protection , 190(B), 726-745. ( JCR Q1 ) 7. Peng, H., Xu, Z. D., Xia, Z., Zang, X., Xi, D., Jiang, X., ... & Lu, H.* (2024). Closed Wellbore Integrity Failure Induced by Casing Corrosion Based on Solid-Chemical Coupling Model in CO 2 Sequestration. Geoenergy Science and Engineering , 241, 213140. ( JCR Q1 ) 8. Xi, D., Lu, H.* , Shi, K., Ni, H., & Iseley, T. (2024). Dual-Component Polyurethane Spray Technology for Repairing Concrete Pipes: A Case Study. ASCE Journal of Pipeline Systems Engineering and Practice , 15(4), 05024002. (ASCE 期刊 , Editor’s Choice Award) 9. Peng, H., Lu, H.* , Xu, Z. D., Xi, D., & Qin, G. (2024). Failure mechanism of carbon dioxide transport infrastructure: A comprehensive review. International Journal of Greenhouse Gas Control , 135, 104144. ( JCR Q2 ) 10. Xi, D., Lu, H.* , Zou, X., Fu, Y., Ni, H., & Li, B. (2024). Development of trenchless rehabilitation for underground pipelines from an academic perspective. Tunnelling and Underground Space Technology , 144, 105515. ( JCR Q1 ) 11. Lu, H. , Xu, Z. D., Song, K., Cheng, Y. F., Dong, S., Fang, H., Peng, H., Fu, Y., Xi, D., Han, Z., Jiang, X., Dong, Y., Gai, P. & Shan, Y. (2023). Greenhouse gas emissions from US crude oil pipeline accidents: 1968 to 2020. Scientific Data , 10(1), 563. ( JCR Q1 ) 12. Lu, H. , Xu, Z. D., Cheng, Y. F., Peng, H., Xi, D., Jiang, X., ... & Shan, Y. (2023). An inventory of greenhouse gas emissions due to natural gas pipeline incidents in the United States and Canada from 1980s to 2021. Scientific Data , 10(1), 282. ( JCR Q1 ) 13. Xi, D., Lu, H.* , Fu, Y., Dong, S., Jiang, X., & Matthews, J. (2023). Carbon dioxide pipelines: A statistical analysis of historical accidents. Journal of Loss Prevention in the Process Industries , 84, 105129. ( JCR Q2 ) 14. Lu, H. , Xu, Z. D., Zang, X., Xi, D., Iseley, T., Matthews, J. C., & Wang, N. (2023). Leveraging Machine Learning for Pipeline Condition Assessment. ASCE Journal of Pipeline Systems Engineering and Practice , 14(3), 04023024. (ASCE 期刊 , Editor’s Choice Award) 15. Lu, H. , Peng, H., Xu, Z., Qin, G., Azimi, M., Matthews, J. C., & Cao, L. (2023). Theory and machine learning modeling for burst pressure estimation of pipeline with multipoint corrosion. ASCE Journal of Pipeline Systems Engineering and Practice , 14(3), 04023022. (ASCE 期刊 ) 16. Lu, H. , Jiang, X., Xu, Z., Wang, N., & Iseley, D. T. (2023). Numerical study on mechanical properties of pipeline installed via horizontal directional drilling under static and dynamic traffic loads. Tunnelling and Underground Space Technology , 136, 105077. ( JCR Q1 ) 17. Lu, H. , Jiang, X., Xu, Z., Ni, H., & Fu, L. (2023). Mechanical behavior of high-pressure pipeline installed through horizontal directional drilling under seismic loads. Tunnelling and Underground Space Technology , 136, 105073. ( JCR Q1 ) 18. Lu, H. , Xi, D., & Qin, G. (2023). Environmental risk of oil pipeline accidents. Science of The Total Environment , 874, 162386. ( JCR Q1 ) 19. Lu, H. , Peng, H., Xu, Z. D., Matthews, J. C., Wang, N., & Iseley, T. (2022). A Feature Selection–Based Intelligent Framework for Predicting Maximum Depth of Corroded Pipeline Defects. ASCE Journal of Performance of Constructed Facilities , 36(5), 04022044. (ASCE 期刊 ) 20. Lu, H. , Xi, D., Ma, X., Zheng, S., Huang, C., & Wei, N. (2022). Hybrid machine learning models for predicting short-term wave energy flux. Ocean Engineering , 264, 112258. ( JCR Q1 ) 21. Lu, H. , Ma, X., & Ma, M. (2021). Impacts of the COVID-19 pandemic on the energy sector. Journal of Zhejiang University-SCIENCE A , 22(12), 941. ( JCR Q2, Best Paper Award ) 22. Lu, H. , Xu, Z. D., Azimi, M., Fu, L., & Wang, Y. (2022). An Effective Data-Driven Model for Predicting Energy Consumption of Long-Distance Oil Pipelines. ASCE Journal of Pipeline Systems Engineering and Practice , 13(2), 04022005. (ASCE 期刊 ) 23. Lu, H. , Xi, D., Ma, X., Zheng, S., Huang, C., & Wei, N. (2022). Hybrid machine learning models for predicting short-term wave energy flux. Ocean Engineering , 264, 112258. ( JCR Q1 ) 24. Lu, H. , Xu, Z. D., Iseley, T., & Matthews, J. C. (2021). Novel data-driven framework for predicting residual strength of corroded pipelines. ASCE Journal of Pipeline Systems Engineering and Practice , 12(4), 04021045. (ASCE 期刊 , Most Cited Paper) 25. Lu, H. , Iseley, T., Matthews, J., & Liao, W. (2021). Hybrid machine learning for pullback force forecasting during horizontal directional drilling. Automation in Construction , 129, 103810. ( JCR Q1 ) 26. Lu, H. , Iseley, T., Matthews, J., Liao, W., & Azimi, M. (2021). An ensemble model based on relevance vector machine and multi-objective salp swarm algorithm for predicting burst pressure of corroded pipelines. Journal of Petroleum Science and Engineering , 203, 108585. ( JCR Q1 ) 27. Lu, H. , Behbahani, S., Ma, X., & Iseley, T. (2021). A multi-objective optimizer-based model for predicting composite material properties. Construction and Building Materials , 284, 122746. ( JCR Q1 ) 28. Lu, H. , Ma, X., Ma, M., & Zhu, S. (2021). Energy price prediction using data-driven models: A decade review. Computer Science Review , 39, 100356. ( JCR Q1 ) 29. Lu, H. , Matthews, J., Azimi, M., Iseley, T. (2020). A Near Real-time HDD Pullback Force Prediction Model Based on Improved Radial Basis Function Neural Networks. ASCE Journal of Pipeline Systems Engineering and Practice , 11(4), 04020042. (ASCE 期刊 ) 30. Lu, H. , Iseley, T., Behbahani, S., & Fu, L. (2020). Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunnelling and Underground Space Technology , 98, 103249. (JCR Q1, Most Cited Paper) 31. Lu, H. , Wu, X., Ni, H., Yan, X., Azimi, M., Niu, Y. (2020). Stress analysis of urban gas pipeline repaired by inserted hose lining method. Composites Part B Engineering , 183, 107657. ( JCR Q1 ) 32. Lu, H. , Behbahani, S., Azimi, M., Matthews, J. C., Han, S., & Iseley, T. (2020). Trenchless Construction Technologies for Oil and Gas Pipelines: State-of-the-Art Review. ASCE Journal of Construction Engineering and Management , 146(6), 03120001. ( JCR Q1, ASCE 期刊 ) 33. Lu, H. , Cheng, F., Ma, X., & Hu, G. (2020). Short-term prediction of building energy consumption employing an improved extreme gradient boosting model: A case study of an intake tower. Energy , 203, 117756. ( JCR Q1 ) 34. Lu, H. , Ma, X., & Azimi, M. (2020). US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model. Energy , 194, 116905. ( JCR Q1 ) 35. Lu, H. , & Ma, X. (2020). Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere , 249, 126169. ( JCR Q1 ) 36. Lu, H. , Ma, X., Huang, K., & Azimi, M. (2020). Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer. Renewable and Sustainable Energy Reviews , 127, 109856. ( JCR Q1 ) 37. Lu, H. , Guo, L., Azimi, M., & Huang, K. (2019). Oil and Gas 4.0 era: A systematic review and outlook. Computers in Industry , 111, 68-90. ( JCR Q1 ) 38. Lu, H. , Huang, K., Fu, L., Zhang, Z., Wu, S., Lyu, Y., & Zhang, X. (2018). Study on leakage and ventilation scheme of gas pipeline in tunnel. Journal of Natural Gas Science and Engineering , 53, 347-358. ( JCR Q1 ) 39. Lu, H. , Wu, X. N., Iseley, T., Matthews, J. & Peng, S. B. (2018). Trenchless installation, rehabilitation and replacement technologies for natural gas pipelines abroad. Natural Gas Industry , 38(3), 110-120. ( EI 、卓越行动计划期刊 ) 40. Shang, B., Li, C., & Lu, H*. (2017). Stress analysis of suspended gas pipeline segment. ASCE Journal of Pipeline Systems Engineering and Practice , 8(3), 04017003. (ASCE 期刊 ) 41. Lu, H. , Huang, K., & Wu, S. (2016). Vibration and stress analyses of positive displacement pump pipeline systems in oil transportation stations. ASCE Journal of Pipeline Systems Engineering and Practice , 7(1), 05015002. (ASCE 期刊 ) 专著及章节 1. Lu, H. , Xu, Z. D., Iseley, T., Peng, H., & Fu, L. (2023). Pipeline Inspection and Health Monitoring Technology: The Key to Integrity Management. Springer Nature. ( 专著 ) 2. Xi, D., Lu, H.* , Xu, Z. D., Jiang, X., Peng, H., & Fang, H. (2024). Prevention of natural gas pipeline cracking. Advances in Natural Gas: Formation, Processing, and Applications. Volume 6: Natural Gas Transportation and Storage, 293-313. ( 章节 ) 3. Xi, D., Lu, H.* , Dong, S., Xu, Z. D., & Wang, B. (2024). Engineering Properties of Hydrogen Storage Materials. Hydrogen Transportation and Storage. Section I: An Overview of Hydrogen Storage and Transportation Technologies. ( 章节 ) 4. Jiang, X., Lu, H.* , Dong, S., Xu, Z. D., & Wang, B. (2024). Prevention of Hydrogen Pipeline Cracking and Leakage. Hydrogen Transportation and Storage. Section I: An Overview of Hydrogen Storage and Transportation Technologies. ( 章节 )

学术兼职

1. ASCE Journal of Pipeline Systems Engineering and Practice(JCR Q3) 副主编 2. Journal of Pipeline Science and Engineering(JCR Q1) 编委 3. Tunnelling and Underground Space Technology(JCR Q1) 客座编辑 4. Structural Durability & Health Monitoring(EI) 客座编辑 5. Journal of Dynamic Disasters 副主编 6. Urban Lifeline 客座编辑 / 青年编委 7. 《天然气工业》(EI)和《油气储运》(中文核心)第一、二届青年编委 8. 中国石油学会石油储运专业委员会青年工作部委员 9. 国际地下资产管理研究所( BAMI-I )油气委员会主席 10. 国际青年管道协会( YPI )中国区主席( 2023 年度) 11. 江苏省复合材料学会青年工作委员会委员 12. 第十五届石油天然气管道安全 ( 氢能储运 ) 国际会议大会执行主席 13. Baltic Assembly of Advanced Materials Congress 国际会议分会主席

推荐链接
down
wechat
bug