近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Lu, H. , Xi, D., Xiang, Y., Su, Z. & Cheng, Y. F. (2025). Vehicle-canine collaboration for urban pipeline methane leak detection. Nature Cities . DOI: 10.1038/s44284-024-00183-w
2. Lu, H. , Liu, C., Zou, X., Peng, H., Ni, H., & Iseley, T. (2025). Prediction of construction traction force for corroded pipeline rehabilitation using multilayer composite liners. ASCE Journal of Pipeline Systems Engineering and Practice, 16(2), 04024080. ( ASCE 期刊 )
3. Lu, H. , Matthews, J., Chae, A., Shou, K. J., Ariaratnam, S., Fang, H., Ma, B., & Iseley, T. (2024). Advancing underground infrastructure: trenchless technologies and smart asset management in the digital age. Tunnelling and Underground Space Technology , 106130. ( JCR Q1 )
4. Xia, Z., Xu, Z. D., Lu, H.* , Peng, H., Zang, X., Liu, X., & Wang, X. (2024) Modeling and assessment of hydrogen-blended natural gas releases from buried pipeline. International Journal of Hydrogen Energy , 90, 230-245. ( JCR Q1 )
5. Wang, Q. & Lu, H.* (2024). A novel stacking ensemble learner for predicting residual strength of corroded pipelines. npj Materials Degradation , 8, 87. ( JCR Q1 )
6. Peng, H., Xu, Z. D., Lu, H.* , Xi, D., Xia, Z., Yang, C., & Wang, B. A review of underground transport infrastructure monitoring in CCS: Technology and Engineering Practice. Process Safety and Environmental Protection , 190(B), 726-745. ( JCR Q1 )
7. Peng, H., Xu, Z. D., Xia, Z., Zang, X., Xi, D., Jiang, X., ... & Lu, H.* (2024). Closed Wellbore Integrity Failure Induced by Casing Corrosion Based on Solid-Chemical Coupling Model in CO 2 Sequestration. Geoenergy Science and Engineering , 241, 213140. ( JCR Q1 )
8. Xi, D., Lu, H.* , Shi, K., Ni, H., & Iseley, T. (2024). Dual-Component Polyurethane Spray Technology for Repairing Concrete Pipes: A Case Study. ASCE Journal of Pipeline Systems Engineering and Practice , 15(4), 05024002. (ASCE 期刊 , Editor’s Choice Award)
9. Peng, H., Lu, H.* , Xu, Z. D., Xi, D., & Qin, G. (2024). Failure mechanism of carbon dioxide transport infrastructure: A comprehensive review. International Journal of Greenhouse Gas Control , 135, 104144. ( JCR Q2 )
10. Xi, D., Lu, H.* , Zou, X., Fu, Y., Ni, H., & Li, B. (2024). Development of trenchless rehabilitation for underground pipelines from an academic perspective. Tunnelling and Underground Space Technology , 144, 105515. ( JCR Q1 )
11. Lu, H. , Xu, Z. D., Song, K., Cheng, Y. F., Dong, S., Fang, H., Peng, H., Fu, Y., Xi, D., Han, Z., Jiang, X., Dong, Y., Gai, P. & Shan, Y. (2023). Greenhouse gas emissions from US crude oil pipeline accidents: 1968 to 2020. Scientific Data , 10(1), 563. ( JCR Q1 )
12. Lu, H. , Xu, Z. D., Cheng, Y. F., Peng, H., Xi, D., Jiang, X., ... & Shan, Y. (2023). An inventory of greenhouse gas emissions due to natural gas pipeline incidents in the United States and Canada from 1980s to 2021. Scientific Data , 10(1), 282. ( JCR Q1 )
13. Xi, D., Lu, H.* , Fu, Y., Dong, S., Jiang, X., & Matthews, J. (2023). Carbon dioxide pipelines: A statistical analysis of historical accidents. Journal of Loss Prevention in the Process Industries , 84, 105129. ( JCR Q2 )
14. Lu, H. , Xu, Z. D., Zang, X., Xi, D., Iseley, T., Matthews, J. C., & Wang, N. (2023). Leveraging Machine Learning for Pipeline Condition Assessment. ASCE Journal of Pipeline Systems Engineering and Practice , 14(3), 04023024. (ASCE 期刊 , Editor’s Choice Award)
15. Lu, H. , Peng, H., Xu, Z., Qin, G., Azimi, M., Matthews, J. C., & Cao, L. (2023). Theory and machine learning modeling for burst pressure estimation of pipeline with multipoint corrosion. ASCE Journal of Pipeline Systems Engineering and Practice , 14(3), 04023022. (ASCE 期刊 )
16. Lu, H. , Jiang, X., Xu, Z., Wang, N., & Iseley, D. T. (2023). Numerical study on mechanical properties of pipeline installed via horizontal directional drilling under static and dynamic traffic loads. Tunnelling and Underground Space Technology , 136, 105077. ( JCR Q1 )
17. Lu, H. , Jiang, X., Xu, Z., Ni, H., & Fu, L. (2023). Mechanical behavior of high-pressure pipeline installed through horizontal directional drilling under seismic loads. Tunnelling and Underground Space Technology , 136, 105073. ( JCR Q1 )
18. Lu, H. , Xi, D., & Qin, G. (2023). Environmental risk of oil pipeline accidents. Science of The Total Environment , 874, 162386. ( JCR Q1 )
19. Lu, H. , Peng, H., Xu, Z. D., Matthews, J. C., Wang, N., & Iseley, T. (2022). A Feature Selection–Based Intelligent Framework for Predicting Maximum Depth of Corroded Pipeline Defects. ASCE Journal of Performance of Constructed Facilities , 36(5), 04022044. (ASCE 期刊 )
20. Lu, H. , Xi, D., Ma, X., Zheng, S., Huang, C., & Wei, N. (2022). Hybrid machine learning models for predicting short-term wave energy flux. Ocean Engineering , 264, 112258. ( JCR Q1 )
21. Lu, H. , Ma, X., & Ma, M. (2021). Impacts of the COVID-19 pandemic on the energy sector. Journal of Zhejiang University-SCIENCE A , 22(12), 941. ( JCR Q2, Best Paper Award )
22. Lu, H. , Xu, Z. D., Azimi, M., Fu, L., & Wang, Y. (2022). An Effective Data-Driven Model for Predicting Energy Consumption of Long-Distance Oil Pipelines. ASCE Journal of Pipeline Systems Engineering and Practice , 13(2), 04022005. (ASCE 期刊 )
23. Lu, H. , Xi, D., Ma, X., Zheng, S., Huang, C., & Wei, N. (2022). Hybrid machine learning models for predicting short-term wave energy flux. Ocean Engineering , 264, 112258. ( JCR Q1 )
24. Lu, H. , Xu, Z. D., Iseley, T., & Matthews, J. C. (2021). Novel data-driven framework for predicting residual strength of corroded pipelines. ASCE Journal of Pipeline Systems Engineering and Practice , 12(4), 04021045. (ASCE 期刊 , Most Cited Paper)
25. Lu, H. , Iseley, T., Matthews, J., & Liao, W. (2021). Hybrid machine learning for pullback force forecasting during horizontal directional drilling. Automation in Construction , 129, 103810. ( JCR Q1 )
26. Lu, H. , Iseley, T., Matthews, J., Liao, W., & Azimi, M. (2021). An ensemble model based on relevance vector machine and multi-objective salp swarm algorithm for predicting burst pressure of corroded pipelines. Journal of Petroleum Science and Engineering , 203, 108585. ( JCR Q1 )
27. Lu, H. , Behbahani, S., Ma, X., & Iseley, T. (2021). A multi-objective optimizer-based model for predicting composite material properties. Construction and Building Materials , 284, 122746. ( JCR Q1 )
28. Lu, H. , Ma, X., Ma, M., & Zhu, S. (2021). Energy price prediction using data-driven models: A decade review. Computer Science Review , 39, 100356. ( JCR Q1 )
29. Lu, H. , Matthews, J., Azimi, M., Iseley, T. (2020). A Near Real-time HDD Pullback Force Prediction Model Based on Improved Radial Basis Function Neural Networks. ASCE Journal of Pipeline Systems Engineering and Practice , 11(4), 04020042. (ASCE 期刊 )
30. Lu, H. , Iseley, T., Behbahani, S., & Fu, L. (2020). Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunnelling and Underground Space Technology , 98, 103249. (JCR Q1, Most Cited Paper)
31. Lu, H. , Wu, X., Ni, H., Yan, X., Azimi, M., Niu, Y. (2020). Stress analysis of urban gas pipeline repaired by inserted hose lining method. Composites Part B Engineering , 183, 107657. ( JCR Q1 )
32. Lu, H. , Behbahani, S., Azimi, M., Matthews, J. C., Han, S., & Iseley, T. (2020). Trenchless Construction Technologies for Oil and Gas Pipelines: State-of-the-Art Review. ASCE Journal of Construction Engineering and Management , 146(6), 03120001. ( JCR Q1, ASCE 期刊 )
33. Lu, H. , Cheng, F., Ma, X., & Hu, G. (2020). Short-term prediction of building energy consumption employing an improved extreme gradient boosting model: A case study of an intake tower. Energy , 203, 117756. ( JCR Q1 )
34. Lu, H. , Ma, X., & Azimi, M. (2020). US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model. Energy , 194, 116905. ( JCR Q1 )
35. Lu, H. , & Ma, X. (2020). Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere , 249, 126169. ( JCR Q1 )
36. Lu, H. , Ma, X., Huang, K., & Azimi, M. (2020). Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer. Renewable and Sustainable Energy Reviews , 127, 109856. ( JCR Q1 )
37. Lu, H. , Guo, L., Azimi, M., & Huang, K. (2019). Oil and Gas 4.0 era: A systematic review and outlook. Computers in Industry , 111, 68-90. ( JCR Q1 )
38. Lu, H. , Huang, K., Fu, L., Zhang, Z., Wu, S., Lyu, Y., & Zhang, X. (2018). Study on leakage and ventilation scheme of gas pipeline in tunnel. Journal of Natural Gas Science and Engineering , 53, 347-358. ( JCR Q1 )
39. Lu, H. , Wu, X. N., Iseley, T., Matthews, J. & Peng, S. B. (2018). Trenchless installation, rehabilitation and replacement technologies for natural gas pipelines abroad. Natural Gas Industry , 38(3), 110-120. ( EI 、卓越行动计划期刊 )
40. Shang, B., Li, C., & Lu, H*. (2017). Stress analysis of suspended gas pipeline segment. ASCE Journal of Pipeline Systems Engineering and Practice , 8(3), 04017003. (ASCE 期刊 )
41. Lu, H. , Huang, K., & Wu, S. (2016). Vibration and stress analyses of positive displacement pump pipeline systems in oil transportation stations. ASCE Journal of Pipeline Systems Engineering and Practice , 7(1), 05015002. (ASCE 期刊 )
专著及章节
1. Lu, H. , Xu, Z. D., Iseley, T., Peng, H., & Fu, L. (2023). Pipeline Inspection and Health Monitoring Technology: The Key to Integrity Management. Springer Nature. ( 专著 )
2. Xi, D., Lu, H.* , Xu, Z. D., Jiang, X., Peng, H., & Fang, H. (2024). Prevention of natural gas pipeline cracking. Advances in Natural Gas: Formation, Processing, and Applications. Volume 6: Natural Gas Transportation and Storage, 293-313. ( 章节 )
3. Xi, D., Lu, H.* , Dong, S., Xu, Z. D., & Wang, B. (2024). Engineering Properties of Hydrogen Storage Materials. Hydrogen Transportation and Storage. Section I: An Overview of Hydrogen Storage and Transportation Technologies. ( 章节 )
4. Jiang, X., Lu, H.* , Dong, S., Xu, Z. D., & Wang, B. (2024). Prevention of Hydrogen Pipeline Cracking and Leakage. Hydrogen Transportation and Storage. Section I: An Overview of Hydrogen Storage and Transportation Technologies. ( 章节 )