近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Zhang, G.*, Khandelwal, K.*, & Guo, T. Topology optimization of stability-constrained structures with simple/multiple eigenvalues . International Journal for Numerical Methods in Engineering , accepted.
2. Zhang, G. * , Khandelwal, K.* , & Guo, T. (2023). Finite strain topology optimization with nonlinear stability constraints . Computer Methods in Applied Mechanics and Engineering , 413, 116119.
3. Zhang, G., Feng, N., & Khandelwal, K.* (2022). Gurson–Tvergaard–Needleman model guided fracture‐resistant structural designs under finite deformations. International Journal for Numerical Methods in Engineering, 123(14), 3344-3388.
4. Zhang, G., Feng, N., & Khandelwal, K.* (2021). A computational framework for homogenization and multiscale stability analyses of nonlinear periodic materials. International Journal for Numerical Methods in Engineering, 122 (22), 6527-6575.
5. Feng, N., Zhang, G., & Khandelwal, K.* (2020). On the Performance Evaluation of Stochastic Finite Elements in Linear and Nonlinear Problems. Computers & Structures, DOI: 10.1016/j.compstruc.2020.106408.
6. Zhang, G., & Khandelwal, K.* (2020). Topology optimization of dissipative metamaterials at finite strains based on nonlinear homogenization. Structural and Multidisciplinary Optimization, 62, 1419–1455.
7. Zhang, G., & Khandelwal, K.* (2019). Computational design of finite strain auxetic metamaterials via topology optimization and nonlinear homogenization. Computer Methods in Applied Mechanics and Engineering, 356, 490-527.
8. Zhang, G., & Khandelwal, K.* (2019). Design of dissipative multimaterial viscoelastic-hyperelastic systems at finite strains via topology optimization. International Journal for Numerical Methods in Engineering, 119(11), 1037-1068.
9. Zhang, G., Alberdi, R., & Khandelwal, K.* (2018). Topology optimization with incompressible materials under small and finite deformations using mixed u/p elements. International Journal for Numerical Methods in Engineering, 115(8), 1015-1052.
10. Zhang, G., Alberdi, R., & Khandelwal, K.* (2018). On the locking free isogeometric formulations for 3-D curved Timoshenko beams. Finite Elements in Analysis and Design, 143, 46-65.
11. Li, L., Zhang, G., & Khandelwal, K.* (2018). Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model. Structural and Multidisciplinary Optimization, 58, 1589-1618.
12. Alberdi, R., Zhang, G., & Khandelwal, K.* (2018). An isogeometric approach for analysis of phononic crystals and elastic metamaterials with complex geometries. Computational Mechanics, 62(3), 285-307.
13. Alberdi, R., Zhang, G., Li, L., & Khandelwal, K.* (2018). A unified framework for nonlinear path‐dependent sensitivity analysis in topology optimization. International Journal for Numerical Methods in Engineering, 115(1), 1-56.
14. Alberdi, R., Zhang, G., & Khandelwal, K.* (2018). A framework for implementation of RVE‐based multiscale models in computational homogenization using isogeometric analysis. International Journal for Numerical Methods in Engineering, 114(9), 1018-1051.
15. Zhang, G., Li, L., & Khandelwal, K.* (2017). Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements. Structural and Multidisciplinary Optimization, 55(6), 1965
16. Li, L., Zhang, G., & Khandelwal, K.* (2017). Topology optimization of energy absorbing structures with maximum damage constraint. International Journal for Numerical Methods in Engineering, 112(7), 737-775.
17. Li, L., Zhang, G., & Khandelwal, K.* (2017). Design of energy dissipating elastoplastic structures under cyclic loads using topology optimization. Structural and Multidisciplinary Optimization, 56(2), 391-412.
18. Li, L., Zhang, G., & Khandelwal, K.* (2017). Topology optimization of structures with gradient elastic material. Structural and Multidisciplinary Optimization, 56(2), 371-390.
19. Zhang, G., Alberdi, R., & Khandelwal, K.* (2016). Analysis of three-dimensional curved beams using isogeometric approach. Engineering Structures, 117, 560-574.
20. Zhang, G., & Khandelwal, K.* (2016). Modeling of nonlocal damage-plasticity in beams using isogeometric analysis. Computers & Structures, 165, 76-95.
21. Guo, T.*, Song, L. L., & Zhang, G. D. (2015). Numerical simulation and seismic fragility analysis of a self-centering steel MRF with web friction devices. Journal of Earthquake Engineering, 19(5), 731-751.
22. Guo, T.*, Zhang, G., & Chen, C. (2014). Experimental study on self-centering concrete wall with distributed friction devices. Journal of Earthquake Engineering, 18(2), 214-230.
23. Guo, T.*, Song, L., & Zhang, G. (2011). Numerical simulation of the seismic behavior of self-centering steel beam-column connections with bottom flange friction devices. Earthquake Engineering and Engineering Vibration, 10(2), 229.