当前位置: X-MOL首页全球导师 国内导师 › 张泽君
张泽君 特聘研究员 博士生导师 收藏 完善纠错
浙江大学    海洋学院

个人简介

课程简介:光学技术是信息时代的基石,在海洋检测、观测领域中发挥着重要作用。如光学传感、多种光谱技术在海洋检测中得到广泛应用;光纤是海底观测网的主要信息通道,同时蓝绿光无线通信技术也为水下短距离高速数据传输提供新的思路。本课程着重学习水下光学技术的基本原理与最新进展,主要内容包括光源、光探测器、光谱技术与成像技术及其应用;水下光学信道、关键器件、水下光通信系统设计方法;海洋光学技术前沿方向和最新进展等。 (研究生课程) 海洋智能系统设计 课程简介:本课程包含海洋技术的发展现状及前沿技术介绍,并以海洋机器人研发、海洋传感网络构建、海洋电子信息及应用、海洋装备与结构物设计为载体,通过海洋智能系统前沿技术概述,通过课堂教学和课程设计相结合,把理论教学、课程设计及专业方向相融合,为研究生开展硕士课题研究提供坚实的设计基础。 (本科生课程) 文献综述与科技写作 课程简介:本课程是以“使用现代信息技术和方法高效学习,并清晰、有逻辑地综述领域内最新科技进展”为目标的一门讲授与实操紧密结合课程。教学内容主要包括常用的中英文文献数据库的介绍、检索策略的制定与调整、文献管理工具的使用,并在此基础上讲授如何进行文献综述;同时,讲授论文分类和特点、本科生毕业论文的主要组成及各部分的撰写方法、期刊论文结构及其撰写方法。 (本科生课程) 海洋传感技术 课程简介:本课程的目的是培养学生利用传感技术有关工程知识解决海洋技术领域复杂工程问题的能力,能够通过条件假设、模型构建和知识表达、文献检索等对海洋技术领域的复杂工程问题进行分析与评价,以获得有效结论,培养学生基于传感技术的仪器和测量系统等工程相关背景知识进行合理分析的能力。

研究领域

· 偏振光学 · 光子晶体与超材料 · 光学传感 · 水下无线光通信

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[40] Z. Zhang, S. Pu, J. Su, W. Wang, Y. Li, Y. Tsuji, Y. Li*, and J. Xu. Expanding the detection range of SPR liquid refractive index sensor based on polarization multiplexing. IEEE Sensors Journal, 2025, Accept for publication. [39] Z. Zhang, S. Sun, S. Pu, J. Su, Y. Tsuji, Y. Li*, and J. Xu. Parallel six-mode-selective converter based on photonic crystal fiber without holes in the cladding. Optics Express, 2025, 33(2): 2908-2923. [38] A. Ali, K. M. Mithilesh, A. Mahmood, Z. Zhang, C. Song, and J. Xu*. Compact Full-Duplex Optical Wireless Transceiver Based on Wavelength-Shifting Fiber and Blue Laser Diode. Optics Communications, 132172, 2025. [37] W. Wang, T. Matsuzaki, S. Sun, Z. Zhang*, A. Iguchi, and Y. Tsuji*. Design of Polarization Beam Splitter Based on Rectangular Core Photonic Crystal Fiber Without Holes in the Cladding. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2025, 61(1): 6800106. [38] W. Liao, C. Cai, Y. Zhang, H. Wang, Q. Chen, T. Zhang, X. Ma, Y. He, X. Hu, S. Yuan, B. Chen, Z. Zhang, and J. Xu*. Fast path loss calculation of W2A-OWC based on the grid cell collective photon refraction method. Optics Communications, 132168, 2025. [37] Y. Li, S. Li, P. Jiang, C. Gu, X. Chen, and Z. Zhang*. Controlled alignment imaging optical MIMO communication system based on light spot detection of arrayed light sources. Optics Express, 2024, 32(17): 30393-30406. [36] Z. Zhang, X. Wang, et al., All-optical 8-QAM signal demodulator based on 2D photonic crystals. Optics and laser technology, 2024. 169: p. 110157. [35] J. Lu, Y. Zhang, A. Ali, C. Cai, Y. Gao, Z. Zhang, and J. Xu*. Simultaneous underwater beam steering and PAM4 transmission enabled by the acousto-optic effect. Optics Express, 32(21):37678-37690, 2024. [34] T. Zhang, G. Song, Z. Du, H. Wang, Q. Chen, W. Liao, X. Wang, S. Sun, Z. Zhang, and J. Xu*. Modeling and field demonstration of water-to-ice wireless optical communication system based on highly-sensitive detectors. Optics Express, 32(19):33075-33089, 2024. [33] R. Tehseen, M. Shahzad, M. K. Mane, A. Ali, Z. Zhang, and J. Xu*. 3D visualization in turbid water using optimal photon counting and a GAT-based peplography method. Applied Optics, 63(17):4558-4565, 2024. [32] J. Li, J. Cheng, Y. Zhang, B. Jia, H. Zou, Z. Zhang, and J. Xu*. Underwater laser positioning of targets outside the field of view based on a binocular vision. Applied Optics, 62(28):7354-7361, 2023. [31] Z. Du, W. Ge, C. Cai, H. Wang, G. Song, J. Xiong, Y. Li, Z. Zhang, and J. Xu*. 90-m/660-Mbps underwater wireless optical communication enabled by interleaved single-carrier FDM scheme combined with sparse weight-initiated DNN equalizer. Journal of Lightwave Technology, 41(16):5310-5320, 2023. [30] C. Zhang, N. Deng, Y. Zhang, Z. Zhang, Y. Li, W. Li, and J. Xu*. Flexible broadcast UWOC system using an LCVR-based tunable optical splitter. Optics Letters, 48(11):3023-3026, 2023. [29] J. Xiong, J. Cheng, H. Deng, Y. Hua, Y. Zhang, Z. Du, L. Zhao, N. Deng, W. Li, Z. Zhang, and J. Xu*. Implementation of large field-of-view detection for UWOC systems based on a diffractive deep neural network. IEEE Photonics Journal, 15(3):45664, 2023. [28] S. Liu, Z. Zhang*, et al., Design of Full Stokes Vector Polarimetry Based on Metasurfaces for Wide-Angle Incident Light. Photonics, 2023. 10(4): p. 382. [27] R. Tehseen, A. Ali, M. Mane, W. Ge, Y. Li, Z. Zhang, and J. Xu*. Enhanced imaging through turbid water based on quadrature lock-in discrimination and retinex aided by adaptive gamma function for illumination correction. Chinese Optics Letters, 21(10):101102, 2023. [26] W. Lyu, X. Li, Y. Zhang, X. Guan, Z. Zhang, and J. Xu*. Experimental demonstration of underwater wireless optical OFDM communication system with a single SPAD receiver. Optics Communications, 508:127767, 2022. [25] Z. Du, H. Deng, Y. Dai, Y. Hua, B. Jia, Z. Qian, J. Xiong, W. Lyu, Z. Zhang, D. Ma, and J. Xu*. Experimental demonstration of an OFDM-UWOC system using a direct decoding FC-DNN-based receiver. Optics Communications, 508:127785, 2022. [24] X. Li, Z. Tong, W. Lyu, X. Chen, X. Yang, Y. Zhang, S. Liu, Y. Dai, Z. Zhang, C. Guo, and J. Xu*. Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots. Optics Express, 30(2):1709-1722, 2022. [23] X. Chen, Y. Dai, Z. Tong, X. Yang, X. Li, G. Song, H. Zou, B. Jia, S. Qin, Z. Zhang, and J. Xu*. Demonstration of a 2× 2 MIMO-UWOC system with large spot against air bubbles. Applied optics, 61(1):41-48, 2022. [22] Z. Du, W. Ge, G. Song, Y. Dai, Y. Zhang, J. Xiong, B. Jia, Y. Hua, D. Ma, Z. Zhang, and J. Xu*. Partially pruned DNN coupled with parallel Monte-Carlo algorithm for path loss prediction in underwater wireless optical channels. Optics Express, 30(8):12835-12847, 2022. [21] C. Zhang, X. Yang, H. Zou, H. Zhang, Y. Zhang, Y. Dai, G. Song, Z. Zhang, B. Wu, and J. Xu*. 9.14-Mbps 64-PPM UWOC system based on a directly modulated MOPA with pre-pulse shaping and a high-sensitivity PMT with analog demodulation. Optics Express, 30(17):30233-30245, 2022. [20] C. Zhang, Y. Zhang, Z. Tong, H. Zou, H. Zhang, Z. Zhang, G. Lin, and J. Xu*. Theoretical analysis and experimental demonstration of gain switching for a PPM based UWOC system with picosecond pulses. Optics Express, 30(21):38663-38673, 2022. [19] A. Ali, R. Tehseen, M. K. Mithilesh, S. A. Hassnain, Z. Zhang, C. Zhang, S. R. Mehdi, A. Mahmood, and J. Xu*. Blue Laser Diode-Based Remote Solid-State Lighting Using Plastic Optical Fiber and Phosphor Film for a Hazardous Environment. ECS Journal of Solid State Science and Technology, 10(1):16001, 2021. [18] J. Lin, Z. Du, C. Yu, W. Ge, W. Lü, H. Deng, C. Zhang, X. Chen, Z. Zhang, and J. Xu*. Machine-vision-based acquisition, pointing, and tracking system for underwater wireless optical communications. Chinese Optics Letters, 19(5):50604, 2021. [17] C. Yu, X. Chen, Z. Zhang, G. Song, J. Lin, and J. Xu*. Experimental verification of diffused laser beam-based optical wireless communication through air and water channels. Optics Communications, 495:127079, 2021. [16] X. Chen, X. Yang, Z. Tong, Y. Dai, X. Li, M. Zhao, Z. Zhang, J. Zhao, and J. Xu*. 150 m/500 Mbps underwater wireless optical communication enabled by sensitive detection and the combination of receiver-side partial response shaping and TCM technology. Journal of Lightwave Technology, 39(14):4614-4621, 2021. [15] Y. Dai, X. Chen, X. Yang, Z. Tong, Z. Du, W. Lyu, C. Zhang, H. Zhang, H. Zou, Y. Cheng, D. Ma, Z. Zhang, and J. Xu*. 200-m/500-Mbps underwater wireless optical communication system utilizing a sparse nonlinear equalizer with a variable step size generalized orthogonal matching pursuit. Optics Express, 29(20):32228-32243, 2021. [14] X. Chen, W. Lyu, Z. Zhang, J. Zhao, and J. Xu*. 56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction. Optics Express, 28(16):23784-23795, 2020. [13] M. Zhao, X. Li, X. Chen, Z. Tong, W. Lyu, Z. Zhang, and J. Xu*. Long-reach underwater wireless optical communication with relaxed link alignment enabled by optical combination and arrayed sensitive receivers. Optics Express, 28(23):34450-34460, 2020. [12] Z. Zhang, Y. Tsuji, M. Eguchi, and C.-P. Chen. Study on silicon-based polarization converter using asymmetric slot waveguide [J]. IEICE Transactions on Electronics, vol. E103-C, no. 11, pp. 605-608, Nov. 2020. [11] S. Kawamura, Y. Tsuji, and Z. Zhang. Design of tapered polarization splitter based on EC-CHFs by full-vectorial FE-BPM Using coordinate transformation [J]. Journal of the Optical Society of America B, vol. 37, no. 4, pp. 1075-1082, Apr. 2020. [10] Z. Zhang, Y. Tsuji, M. Eguchi, and C.-P. Chen. Polarization converter based on square lattice photonic crystal fiber with double-hole units [J]. Crystals, Vol. 9, No. 2, #58, Feb. 2019. [9] Z. Zhang, Y. Tsuji, M. Eguchi, and C.-P. Chen. Study on single-polarized holey fibers with double-hole unit cores for cross-talk free polarization splitter [J]. IEICE Transactions on Electronics, Vol. E101-C, No. 8, pp. 620-626, Aug. 2018. [8] Z. Zhang, Y. Tsuji, M. Eguchi, and C.-P. Chen. Design of polarization converter based on PCF with anisotropic lattice core consisting of circular holes [J]. Journal of Optical Society of America B, Vol. 34, No. 10, pp. 2227-2232, Oct. 2017. [7] Z. Zhang, Y. Tsuji, and M. Eguchi. Design of cross-talk free polarization converter based on square lattice elliptical-hole core circular-hole holey fibers [J]. Journal of Optical Society of America B, Vol. 33 No. 9, pp. 1808-1814, Sept. 2016. [6] K. Ichikawa, Z. Zhang, Y. Tsuji, and M. Eguchi. A study on single polarization guidance in photonic band gap fiber with anisotropic lattice of circular air holes [J]. IEICE Transactions on Electronics, Vol. E99-C, No. 7, pp. 774-779, July 2016. [5] Z. Zhong, Z. Zhang, Y. Tsuji, and M. Eguchi. Study on crosstalk-free polarization splitter based on square lattice single polarization photonic crystal fibers. IEEE Journal of Quantum Electronics, Vol. 52, No. 5, 7000107, May 2016. [4] K. Ichikawa, Z. Zhang, Y. Tsuji, and M. Eguchi. A single-polarization holey fiber with anisotropic lattice of circular air holes [J]. Journal of Lightwave Technology, Vol. 33, No. 18, pp. 3866-3871, Sep. 2015. [3] Z. Zhang, Y. Tsuji, T. Yasui, and K. Hirayama. Design of ultra-compact triplexer with function-expansion based topology optimization [J]. Optics Express, Vol. 23, No.4, pp. 3936-3950, Feb. 2015. [2] Z. Zhang, Y. Tsuji, and M. Eguchi. Study on crosstalk-free polarization splitter with elliptical-hole core circular-hole holey fibers [J]. Journal of Lightwave Technology, Vol. 32, No. 23, pp. 3956-3962, Dec. 2014. [1] Z. Zhang, Y. Tsuji, and M. Eguchi. Design of polarization splitter with single-polarized elliptical-hole core circular-hole holey fibers [J]. Photonics Technology Letters, Vol. 26, No. 6, pp. 541-543, Mar. 2014.

推荐链接
down
wechat
bug