近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[40] Z. Zhang, S. Pu, J. Su, W. Wang, Y. Li, Y. Tsuji, Y. Li*, and J. Xu. Expanding the detection range of SPR liquid refractive index sensor based on polarization multiplexing. IEEE Sensors Journal, 2025, Accept for publication.
[39] Z. Zhang, S. Sun, S. Pu, J. Su, Y. Tsuji, Y. Li*, and J. Xu. Parallel six-mode-selective converter based on photonic crystal fiber without holes in the cladding. Optics Express, 2025, 33(2): 2908-2923.
[38] A. Ali, K. M. Mithilesh, A. Mahmood, Z. Zhang, C. Song, and J. Xu*. Compact Full-Duplex Optical Wireless Transceiver Based on Wavelength-Shifting Fiber and Blue Laser Diode. Optics Communications, 132172, 2025.
[37] W. Wang, T. Matsuzaki, S. Sun, Z. Zhang*, A. Iguchi, and Y. Tsuji*. Design of Polarization Beam Splitter Based on Rectangular Core Photonic Crystal Fiber Without Holes in the Cladding. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2025, 61(1): 6800106.
[38] W. Liao, C. Cai, Y. Zhang, H. Wang, Q. Chen, T. Zhang, X. Ma, Y. He, X. Hu, S. Yuan, B. Chen, Z. Zhang, and J. Xu*. Fast path loss calculation of W2A-OWC based on the grid cell collective photon refraction method. Optics Communications, 132168, 2025.
[37] Y. Li, S. Li, P. Jiang, C. Gu, X. Chen, and Z. Zhang*. Controlled alignment imaging optical MIMO communication system based on light spot detection of arrayed light sources. Optics Express, 2024, 32(17): 30393-30406.
[36] Z. Zhang, X. Wang, et al., All-optical 8-QAM signal demodulator based on 2D photonic crystals. Optics and laser technology, 2024. 169: p. 110157.
[35] J. Lu, Y. Zhang, A. Ali, C. Cai, Y. Gao, Z. Zhang, and J. Xu*. Simultaneous underwater beam steering and PAM4 transmission enabled by the acousto-optic effect. Optics Express, 32(21):37678-37690, 2024.
[34] T. Zhang, G. Song, Z. Du, H. Wang, Q. Chen, W. Liao, X. Wang, S. Sun, Z. Zhang, and J. Xu*. Modeling and field demonstration of water-to-ice wireless optical communication system based on highly-sensitive detectors. Optics Express, 32(19):33075-33089, 2024.
[33] R. Tehseen, M. Shahzad, M. K. Mane, A. Ali, Z. Zhang, and J. Xu*. 3D visualization in turbid water using optimal photon counting and a GAT-based peplography method. Applied Optics, 63(17):4558-4565, 2024.
[32] J. Li, J. Cheng, Y. Zhang, B. Jia, H. Zou, Z. Zhang, and J. Xu*. Underwater laser positioning of targets outside the field of view based on a binocular vision. Applied Optics, 62(28):7354-7361, 2023.
[31] Z. Du, W. Ge, C. Cai, H. Wang, G. Song, J. Xiong, Y. Li, Z. Zhang, and J. Xu*. 90-m/660-Mbps underwater wireless optical communication enabled by interleaved single-carrier FDM scheme combined with sparse weight-initiated DNN equalizer. Journal of Lightwave Technology, 41(16):5310-5320, 2023.
[30] C. Zhang, N. Deng, Y. Zhang, Z. Zhang, Y. Li, W. Li, and J. Xu*. Flexible broadcast UWOC system using an LCVR-based tunable optical splitter. Optics Letters, 48(11):3023-3026, 2023.
[29] J. Xiong, J. Cheng, H. Deng, Y. Hua, Y. Zhang, Z. Du, L. Zhao, N. Deng, W. Li, Z. Zhang, and J. Xu*. Implementation of large field-of-view detection for UWOC systems based on a diffractive deep neural network. IEEE Photonics Journal, 15(3):45664, 2023.
[28] S. Liu, Z. Zhang*, et al., Design of Full Stokes Vector Polarimetry Based on Metasurfaces for Wide-Angle Incident Light. Photonics, 2023. 10(4): p. 382.
[27] R. Tehseen, A. Ali, M. Mane, W. Ge, Y. Li, Z. Zhang, and J. Xu*. Enhanced imaging through turbid water based on quadrature lock-in discrimination and retinex aided by adaptive gamma function for illumination correction. Chinese Optics Letters, 21(10):101102, 2023.
[26] W. Lyu, X. Li, Y. Zhang, X. Guan, Z. Zhang, and J. Xu*. Experimental demonstration of underwater wireless optical OFDM communication system with a single SPAD receiver. Optics Communications, 508:127767, 2022.
[25] Z. Du, H. Deng, Y. Dai, Y. Hua, B. Jia, Z. Qian, J. Xiong, W. Lyu, Z. Zhang, D. Ma, and J. Xu*. Experimental demonstration of an OFDM-UWOC system using a direct decoding FC-DNN-based receiver. Optics Communications, 508:127785, 2022.
[24] X. Li, Z. Tong, W. Lyu, X. Chen, X. Yang, Y. Zhang, S. Liu, Y. Dai, Z. Zhang, C. Guo, and J. Xu*. Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots. Optics Express, 30(2):1709-1722, 2022.
[23] X. Chen, Y. Dai, Z. Tong, X. Yang, X. Li, G. Song, H. Zou, B. Jia, S. Qin, Z. Zhang, and J. Xu*. Demonstration of a 2× 2 MIMO-UWOC system with large spot against air bubbles. Applied optics, 61(1):41-48, 2022.
[22] Z. Du, W. Ge, G. Song, Y. Dai, Y. Zhang, J. Xiong, B. Jia, Y. Hua, D. Ma, Z. Zhang, and J. Xu*. Partially pruned DNN coupled with parallel Monte-Carlo algorithm for path loss prediction in underwater wireless optical channels. Optics Express, 30(8):12835-12847, 2022.
[21] C. Zhang, X. Yang, H. Zou, H. Zhang, Y. Zhang, Y. Dai, G. Song, Z. Zhang, B. Wu, and J. Xu*. 9.14-Mbps 64-PPM UWOC system based on a directly modulated MOPA with pre-pulse shaping and a high-sensitivity PMT with analog demodulation. Optics Express, 30(17):30233-30245, 2022.
[20] C. Zhang, Y. Zhang, Z. Tong, H. Zou, H. Zhang, Z. Zhang, G. Lin, and J. Xu*. Theoretical analysis and experimental demonstration of gain switching for a PPM based UWOC system with picosecond pulses. Optics Express, 30(21):38663-38673, 2022.
[19] A. Ali, R. Tehseen, M. K. Mithilesh, S. A. Hassnain, Z. Zhang, C. Zhang, S. R. Mehdi, A. Mahmood, and J. Xu*. Blue Laser Diode-Based Remote Solid-State Lighting Using Plastic Optical Fiber and Phosphor Film for a Hazardous Environment. ECS Journal of Solid State Science and Technology, 10(1):16001, 2021.
[18] J. Lin, Z. Du, C. Yu, W. Ge, W. Lü, H. Deng, C. Zhang, X. Chen, Z. Zhang, and J. Xu*. Machine-vision-based acquisition, pointing, and tracking system for underwater wireless optical communications. Chinese Optics Letters, 19(5):50604, 2021.
[17] C. Yu, X. Chen, Z. Zhang, G. Song, J. Lin, and J. Xu*. Experimental verification of diffused laser beam-based optical wireless communication through air and water channels. Optics Communications, 495:127079, 2021.
[16] X. Chen, X. Yang, Z. Tong, Y. Dai, X. Li, M. Zhao, Z. Zhang, J. Zhao, and J. Xu*. 150 m/500 Mbps underwater wireless optical communication enabled by sensitive detection and the combination of receiver-side partial response shaping and TCM technology. Journal of Lightwave Technology, 39(14):4614-4621, 2021.
[15] Y. Dai, X. Chen, X. Yang, Z. Tong, Z. Du, W. Lyu, C. Zhang, H. Zhang, H. Zou, Y. Cheng, D. Ma, Z. Zhang, and J. Xu*. 200-m/500-Mbps underwater wireless optical communication system utilizing a sparse nonlinear equalizer with a variable step size generalized orthogonal matching pursuit. Optics Express, 29(20):32228-32243, 2021.
[14] X. Chen, W. Lyu, Z. Zhang, J. Zhao, and J. Xu*. 56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction. Optics Express, 28(16):23784-23795, 2020.
[13] M. Zhao, X. Li, X. Chen, Z. Tong, W. Lyu, Z. Zhang, and J. Xu*. Long-reach underwater wireless optical communication with relaxed link alignment enabled by optical combination and arrayed sensitive receivers. Optics Express, 28(23):34450-34460, 2020.
[12] Z. Zhang, Y. Tsuji, M. Eguchi, and C.-P. Chen. Study on silicon-based polarization converter using asymmetric slot waveguide [J]. IEICE Transactions on Electronics, vol. E103-C, no. 11, pp. 605-608, Nov. 2020.
[11] S. Kawamura, Y. Tsuji, and Z. Zhang. Design of tapered polarization splitter based on EC-CHFs by full-vectorial FE-BPM Using coordinate transformation [J]. Journal of the Optical Society of America B, vol. 37, no. 4, pp. 1075-1082, Apr. 2020.
[10] Z. Zhang, Y. Tsuji, M. Eguchi, and C.-P. Chen. Polarization converter based on square lattice photonic crystal fiber with double-hole units [J]. Crystals, Vol. 9, No. 2, #58, Feb. 2019.
[9] Z. Zhang, Y. Tsuji, M. Eguchi, and C.-P. Chen. Study on single-polarized holey fibers with double-hole unit cores for cross-talk free polarization splitter [J]. IEICE Transactions on Electronics, Vol. E101-C, No. 8, pp. 620-626, Aug. 2018.
[8] Z. Zhang, Y. Tsuji, M. Eguchi, and C.-P. Chen. Design of polarization converter based on PCF with anisotropic lattice core consisting of circular holes [J]. Journal of Optical Society of America B, Vol. 34, No. 10, pp. 2227-2232, Oct. 2017.
[7] Z. Zhang, Y. Tsuji, and M. Eguchi. Design of cross-talk free polarization converter based on square lattice elliptical-hole core circular-hole holey fibers [J]. Journal of Optical Society of America B, Vol. 33 No. 9, pp. 1808-1814, Sept. 2016.
[6] K. Ichikawa, Z. Zhang, Y. Tsuji, and M. Eguchi. A study on single polarization guidance in photonic band gap fiber with anisotropic lattice of circular air holes [J]. IEICE Transactions on Electronics, Vol. E99-C, No. 7, pp. 774-779, July 2016.
[5] Z. Zhong, Z. Zhang, Y. Tsuji, and M. Eguchi. Study on crosstalk-free polarization splitter based on square lattice single polarization photonic crystal fibers. IEEE Journal of Quantum Electronics, Vol. 52, No. 5, 7000107, May 2016.
[4] K. Ichikawa, Z. Zhang, Y. Tsuji, and M. Eguchi. A single-polarization holey fiber with anisotropic lattice of circular air holes [J]. Journal of Lightwave Technology, Vol. 33, No. 18, pp. 3866-3871, Sep. 2015.
[3] Z. Zhang, Y. Tsuji, T. Yasui, and K. Hirayama. Design of ultra-compact triplexer with function-expansion based topology optimization [J]. Optics Express, Vol. 23, No.4, pp. 3936-3950, Feb. 2015.
[2] Z. Zhang, Y. Tsuji, and M. Eguchi. Study on crosstalk-free polarization splitter with elliptical-hole core circular-hole holey fibers [J]. Journal of Lightwave Technology, Vol. 32, No. 23, pp. 3956-3962, Dec. 2014.
[1] Z. Zhang, Y. Tsuji, and M. Eguchi. Design of polarization splitter with single-polarized elliptical-hole core circular-hole holey fibers [J]. Photonics Technology Letters, Vol. 26, No. 6, pp. 541-543, Mar. 2014.