当前位置: X-MOL首页全球导师 国内导师 › 刘龙权

个人简介

工作经历 时间 任职单位 职务 2023.01-至今 上海交通大学 教授 2018.01-2022.12 上海交通大学 副教授 2009.08-2017.12 上海交通大学 助理研究员 2014.07-2014.12 英国利物浦大学 访问学者 2008.01-2009.07 美国沃特飞机工业公司 工程师 2007.01-2007.12 美国PAC Groups 工程师 2005.03-2006.12 上海ABB工程服务有限公司 工程师 教育背景 时间 毕业院校 学历 2001.03-2005.02 上海交通大学 博士 1998.08-2001.03 吉林大学 硕士 1994.09-1998.07 河北工业大学 本科 主要科研项目 (1)面向空天高温循环载荷的石墨烯增强空心微点阵材料强韧机制和破坏机理(国家自然科学基金,2021-2024) (2)开槽螺母拧紧工艺仿真及振动性能测试 (中国商飞,2022-2023) (3)环槽铆钉拉铆工艺过程仿真及配合关系下力学性能(中国商飞,2022-2023) (4)粘接支架静态和动态强度试验(中国商飞,2021-2023) (5)XX飞机复合材料层压板边缘冲击后剩余强度分析方法研究(中国商飞,2019-2022) (6)XX飞机XX材料损伤容限分析方法参数研究(中国商飞,2019-2021) (7)基于本征微管路的高导热/主动冷却复合材料技术研究(基金,2020-2021) (8)纳米点阵材料高精度成形关键技术研究(国家自然科学基金,2017-2019) (9)基于激光制孔的复合材料-金属新型连接技术研究(航空基金,2016-2018) (10)复合材料与金属混合结构新型连接方法及其传载机理研究(上海市自然科学基金,2015-2017) (11)机翼高速颤振试验金属复材混杂胶结结构动力学特性建模技术(“十三五”民机专项,2017-2021) (12)民机复合材料结构适航审定技术研究(“十二五”民机专项,2016-2020) 软件版权登记及专利 (1)一种卫星承载与热管理一体化结构及制备方法,202110761960.X (2)一种金属层空心微点阵结构的制备方法与温控系统,202110761962.9 (3)具有纳米梯度结构的空心管微点阵材料及其制备方法, 201911352355.6 (4)一种可变冲击参数的小质量冲击试验测试系统.201410225242.0 (5)高强度钢圆筒件弯曲强度试验装置。申请号:201310164787.0 (6)一种用于测试不同角度z-pin桥联作用的夹具和测试方. 201510628844.5 (7)一种可适应不同尺寸的胶接结构件制作工装. 201510478519.5 荣誉奖励 (1)上海市科技发明三等奖(排名第二) (2)载人月面着陆与上升飞行器创意方案征集大赛鼓励奖

研究领域

(1)纤维增强复合材料结构强度分析和损伤容限设计; (2)航空航天结构承载与热防护、热管理一体化; (3)空间超精、超精、超稳结构技术。

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] Junming Chen, Longquan Liu*, Liang Shan, Haoqiang Sheng, Dongjie Jiang, Wenjun Xu. Thermal control performance of phase change material combined with ultra-light hollow metallic microlattice for microsatellites. Applied Thermal Engineering, doi:10.1016/j.applthermaleng.2023.120374 [2] Liu,Longquan, Xu,Wenjun. Effects of fillers on the impact damage and compressive residual properties of single hat-stiffened composite panels. Thin-Walled Structures, 2022, 180: 109705 [3] Liu Longquan, Xu Wenju. A Study on the In-Plane Shear-after-Impact Properties of CFRP Composite Laminate. Materials, 2022, 15, 5029 [4] Liu Longquan. A study of the damage tolerance of composite-metal hybrid joints reinforced by multiple and penetrative thin pins. Composites and Advanced Materials, 2022, 31:1-13. [5] Xu Wenjun, Liu Longquan*, Xu Wu. Experiments and Finite Element Simulations of Composite Laminates Following Low Velocity On-Edge Impact Damage. Polymers 2022, 14, 1744. [6] Xu Wenjun, Liu Longquan*, Chen Junming, Lv Xinying, YaoYongtao Yao. A hollow microlattice based ultralight active thermal control device and its fabrication techniques and thermal performances. J. Micromech. Microeng. 2022, 32: 015010 [7] Chen Junming, Liu Longquan*, Xu Wenjun, Huang Xiaobin, Sheng Haoqiang. Design and Analysis of a Hollow Metallic Microlattice Active Cooling System for Microsatellites. Nanomaterials 2022, 12, 1485. [8] J. Chen; X. Huang; Y. He; L. Liu; H. Sheng; W. Hu; Z. Zhao; J. He. Synergistic effect of polyphosphazene nanotubes and graphene on enhancing ablative resistance of ethylene propylene diene monomer insulation composites. J Appl Polym Sci. 2022;e52834 [9] Zhang Xiaojing, Weng Hangjian, Liu Longquan. Effect of dislocation and layer height on the compression performance of tandem honeycombs. Journal of Sandwich Structures and Materials, 2022, 24(2) :928–949 [10] Bao Haisheng, Liu Longquan*. Fabrication and Characterization of Graphene-Enhanced Hollow Microlattice Materials. J. Shanghai Jiao Tong Univ. (Sci.), 2021, 26(4): 1-5. [11] Junming Chen, Jinxuan He, Longquan Liu, Yongzhu He. Effect of hybrid cross-linked polyphosphazene microspheres on ablative and mechanical properties of ethylene propylene diene monomer. J Appl Polym Sci. 2021;138:e51348 [12] Z. W. Guan; A. S. Al-Husainy; Q. Y. Wang; S. W. Jones; C. Su; and L. Q. Liu. Numerical Modeling of Recycled and Normal Aggregate CFRP-Strengthened Concrete-Filled Steel Columns Subjected to Lateral Impact. J. Compos. Constr., 2020, 24(5): 04020048 [13] Shi J.H., Liu L.Q.*, Creating hollow microlattice materials reinforced by carbon nanotubes for improved mechanical properties. Materials Letters, 2019, 240: 205–208 [14] Liu L.Q., Feng H., Tang H.Q., Guan Z.W. Impact resistance of Nomex honeycomb sandwich structures with thin fibre reinforced polymer facesheets. Journal of Sandwich Structures & Materials, Journal of Sandwich Structures and Materials 2018, 20(5): 531–552 [15] Tang H.Q., Liu L.Q.* A novel metal-composite joint and its structural performance. Composite Structures, 2018:26(15): 33-41 [16] Nassier A. Nassira, R.S. Bircha, W.J. Cantwell, Q.Y. Wang, L.Q. Liu, Z.W. Guan. The perforation resistance of glass fibre reinforced PEKK composites. Polymer Testing2018, 72: 423–431 [17] Feng H., Liu L.Q. *, Zhao Q . Experimental and numerical investigation of the effect of entrapped air on the mechanical response of Nomex honeycomb under flatwise compression[J]. Composite Structures, 2017, 182:617-627. [18] Liu L.Q., Zhang J.Q., Chen K.K., Wang H., Liu M.H., Experimental and numerical analysis of the mechanical behavior of liquid shim in composite-to-titanium bolted joints, Aerospace Science and Technology, 2016, 49: 167-172. [19] Liu L.Q., Wang H., Guan Z.W., Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading, Composite Structures, 2015, 121: 304-314. [20] Liu L.Q., Meng P., Wang H., Guan Z. W., The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall, Composites Part B-Engineering, 2015, 76: 122-132. [21] Liu L.Q., Zhang J.Q., Wang H., Guan Z.W., Mechanical behavior of the composite curved laminates in practical applications, Steel and Composite Structures, 2015, 19(5): 1095-1113. [22] Liu L.Q., Zhang J.Q., Chen K.K., Wang H., Combined and interactive effects of interference fit and preloads on composite joints, Chinese Journal of Aeronautics, 2014, 27(3): 716-729. [23] Liu L.Q., The influence of the substrate's stiffness on the liquid shim effect in composite-to-titanium hybrid bolted joints, Proceedings of the Institution of Mechanical Engineers - Part G: Journal of Aerospace Engineering, 2014, 228(3): 470-479. [24] Liu L.Q., Zhang J.Q., Chen K.K., Wang H., Influences of assembly parameters on the strength of bolted composite-metal joints under tensile loading, Advanced Composite Materials, 2013, 22(5): 339-359 [25] Liu L.Q.*, K.Chen. Global–local finite element stress analysis of thick laminate multi-bolt joints in large-scale structures. Finite Elements in Analysis and Design, 2013, 75: 31-37. [26] Liu L.Q.*, K.Chen. Modeling Method for Deformation Analysis in Thick Laminate Mechanical Joints. Journal of Aircraft, 2012, 49(6):1974-1981.

学术兼职

Composite Part B:Engineering、Composite Structure、航空学报等期刊审稿

推荐链接
down
wechat
bug