当前位置: X-MOL首页全球导师 国内导师 › 舒江鹏
舒江鹏 百人计划研究员 博士生导师 收藏 完善纠错
浙江大学    建筑工程学院

个人简介

浙江大学“百人计划”研究员,博士生导师、工程机器人研究中心主任、土木工程系副主任。 曾任斯坦福大学博士后,南丹麦大学助理教授。面向土木工程及新能源基础设施,主持国家自然科学基金、国家重点研发计划、国防科技基金、 浙江省重点研发尖兵领雁计划、江苏省科技计划专项、浙江省自然科学基金、浙江省交通厅科技示范项目等14项国家与省部级课题 ,获浙江省自然科学一等奖(排名3)、日内瓦国际发明展金 奖(排名1)、中国交通运输协会科技进步一等奖(排名1) 等 荣誉。任国自然基金委、科技部、教育部及各地科技项 目、人才与职称评审专家,中国自动化学会、美国土木工程协会、中国公路学会、中国土木工程学会等学术组织专委会委员、理事及国内外SCI/EI期刊编委会成员 ,并长期与斯坦福大学、加州大学伯克利分校、剑桥大学等国内外知名科研机构保持紧密合作。先后发表SCI/EI学术论文100余篇,授权发明专利20余项, 相关成果应用于国内外多部工程规范、指南以及杭州湾跨海大桥、 瑞典 - 丹麦厄勒海峡大桥、天津117大厦、博智林建筑机器人等重点工程项目 。 奖励荣誉 2023年,桥梁服役状态感知-识别-评估智能化的基础理论及应用,浙江省自然科学奖一等奖,排名3 2024年,AI 驱动的桥梁智能检监测关键技术及机器人装备,中国交通运输协会科学技术奖一等奖,排名1 2024年,日内瓦国际发明展金奖,AI big data mining technology in quality control of concrete construction on major humanistic public buildings,排名1 2024年,软土地区中小混凝土桥梁精细化建设与智能控制关键技术研究及应用,中国公路学会科学技术奖二等奖,排名2 2022年,中国公路学会科学技术二等奖,基于多元数据驱动的桥梁智能预制安装和运维状态感知关键技术,排名1 2023年,第23届全国现代结构工程学术研讨会中青年优秀论文奖 2023年,第32届全国结构工程学术会议优秀论文二等奖 2023年,《基于强化学习的机械臂智能建造研究》浙江大学土木工程专业特优毕业论文(设计) 2022年,入选第十七批“西湖英才”计划 2022年,第十七届全国混凝土结构教学研讨会优秀论文 2022年,浙江大学专业学位研究生优秀实践成果指导老师 2021年,浙江大学2020-2021学年优秀研究生德育导师 2021年,浙江大学土木工程专业特优本科毕业论文指导老师 2021年,首届全国大学生工业化建筑与智慧建造竞赛三等奖指导老师 2021年,第一届国际结构健康监测竞赛二等奖 2020年,第十二届浙江省挑战杯大学生创新创业大赛一等奖指导老师 2020年,第六届浙江省国际互联网+大学生创新创业大赛银奖指导老师 2019年,浙江省第二届大学生智能建造和管理创新竞赛一等奖指导老师 2018年,瑞典桥梁协会奖学金 Brosamverkan Stipendie 2017年,瑞典混凝土协会年度学者Roger “Annual Researcher” 2017年,瑞典Adlerbert Foreign Student Hospitality Foundation Scholarship 2016年,瑞典查尔姆斯Hjalmar Granholms minnesfond Scholarship 2016年,瑞典Swedish group within CIB/RILEM/IABSE (CIR) Grant 2014年,瑞典查尔姆斯Hjalmar Granholms minnesfond Scholarship 2011年,瑞典KTH Exchange Grant 专业任职 2023.12至今:中国土木工程学会防护工程分会,理事 2024.08至今,中国机械工业教育协会智能建造专业委员会,委员 2024.08至今,中国自动化学会建筑机器人专业委员会,委员 2024.09至今,中国公路学会养护与管理分会第四届理事会,理事 2024.09至今,浙江省智能建造专家委员会,技术协同组组长 2023.01至今:浙江大学“智能建造”基层教学组织负责人 2022.08至今:美国土木工程协会ASCE大中华分会理事 2022.01至今:浙江省力学学会桥隧力学与工程专业委员会委员。 2021.12至今:世界交通大会WTC桥梁工程学部“基础设施性态视觉识别标准化”工作组创始成员。 2021.07至今:广东省建设工程绿色与装配式发展协会“建筑机器人与装配式”专业委员会资深会员。 2018.11 至今:美国混凝土协会ASCE/ACI 445C技术委员会委员 2018.06 至今:国际材料与结构研究实验联合会技术委员会RILEM委员 2017.06 至今:国际桥梁与结构工程协会(IABSE)会员 2017.06 至今:美国土木工程协会(ASCE)会员 2017.06 至今:美国混凝土协会(ACI)会员 2017.06 至今:国际混凝土结构协会(fib)会员

研究领域

智能建造、人工智能、数字孪生、智能监检测、机器人、大模型

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Yu W, Shu J* , Yang Z, Ding H, Zeng W, Bai Y. Deep Learning-Based Pipe Segmentation and Geometric Reconstruction from Poorly Scanned Point Clouds Using BIM-Driven Data Alignment, Automation in Construction , 2025, 173, 106071 (JCR Q1, IF = 10.51) 2. Shu J , Yu H, Liu G*, Duan Y, Hu H, Zhang H. DF-CDM: Conditional diffusion model with data fusion for bridge dynamic response reconstruction, Mechanical Systems and Signal Processing , 2025, 222, 111783. (JCR Q1, IF = 8.934) 3. Xia Z, Shu J *, Ding W, Gao Y, Duan Y, Debono C, Prakash G, Seychell D, Borg R. Complete-Coverage Path Planning for Surface Inspection of Cable-Stayed Bridge Tower Based on BIM and Climbing Robots, Computer-Aided Civil and Infrastructure Engineering , 2025, 1-23, 13469. 4. Shu J* , Xia Z, Gao Y. BIM-based trajectory planning for unmanned aerial vehicle-enabled box girder bridge inspection, Remote Sensing , 2025, 17(4), 682 5. Shu J , Yang H, Liu G, Yu H, Ning Y, Bairan J. Post-earthquake inspection of high-speed railway viaducts with multi-scale task interaction deep learning strategy. Advances in Structural Engineering . 2025; 28(4), 674-689 6. 舒江鹏 , 陈思民, 张从广, 王海龙*. 基于自适应改进LK光流算法的结构位移视觉测量技术在复杂环境下的性能研究, 中国公路学报 ,2025, 1-11 7. 杨涵, 徐庆凯, 章金勇, 蒋友, 于泓川, 舒江鹏 *, 徐声亮. 基于自适应改进LK光流算法的结构位移视觉测量技术在复杂环境下的性能研究, 东南大学学报(自然科学版) ,2025, 1-12 8. Shu J , Zhang X, Li W, Zeng Z, Zhang H, Duan Y*. Point cloud and machine learning-based automated recognition and measurement of corrugated pipes and rebars for large precast concrete beams, Automation in Construction , 2024, 165, 105493. (JCR Q1, IF = 10.51) 9. Gao Y, Shu J* , Xia Z, Luo Y. From muscular to dexterous: A systematic review to understand the robotic taxonomy in construction and effectiveness, Journal of Field Robotics , 2024, rob.22409 , (JCR Q2, IF = 8.34) 10. Zhang C, Shu J* , Zhang H, Ning Y, Yu Y. Estimation of load-carrying capacity of cracked RC beams using 3D digital twin model integrated with point clouds and images, Engineering Structures , 2024, 310, 118126. (JCR Q1, IF = 5.58) 11. Yang Z, Zhang Y, Bai Y*, Shu J . The application of deep learning in pipeline inspection: current status and challenges. Ships and Offshore Structures , 2024, 1–12. 12. Shu J , Yu H, Liu G*, Yang H, Guo W. Chinyong P, Strauss A, Hao H. Proposing an inherently interpretable machine learning model for shear strength prediction of reinforced concrete beams with stirrups, Case Study in Construction Materials , 2024, 20, e03350. 13. Jin Z, Chen Gu, Niu Y, Zhang C, Zhang X, Shu J* . Variational mode decomposition-based multirate data-fusion framework for estimating structural dynamic displacement by integrating vision- and acceleration-based measurements, Mechanical Systems and Signal Processing , 2024, 211, 11252. (JCR Q1, IF = 8.934) 14. Yang H, Shu J* , Li S, Duan Y. Ultrasonic array tomography-oriented subsurface crack recognition and cross-section image reconstruction of reinforced concrete structure using deep neural networks, Journal of Building Engineering , 2024, 82, 108219. (JCR Q1, IF = 7.144) 15. Yang J, Shu J* , Li J, Yu K, Zandi K, Bai Y. Experimental study of the influence of inclined pre-cracks on shear behavior of RC beams without transverse reinforcement, Engineering Structures , 2024, 299, 117133. (JCR Q1, IF = 5.58) 16. 丁威, 夏哲, 舒江鹏* , 叶建龙, 项贻强. 基于负压吸附爬壁机器人和Transformer的混凝土桥塔裂缝识别检测[J]. 中国公路学报 : 2024, 37(02): 53-64. 17. 杨涵, 李斯涵, 舒江鹏* , 许彩娥, 宁英杰, 叶建龙. 基于阵列超声和特征融合神经网络的钢筋混凝土结构内部裂缝检测. 建筑结构学报 : 2024, 45(07): 1-12 18. 杨子涵, 舒江鹏* , 杨静滢, 李俊, 白勇. 基于DIC技术的钢筋混凝土梁剪切裂缝自动提取与量化方法[J/OL]. 工程力学 :1-14. 19. Ding W, Yang H, Yu K, Shu J.* , Crack detection and quantification for concrete structures using UAV and transformer, Automation in Construction , 2023, 152, 104929. (JCR Q1, IF = 10.51) 20. Shu J , Yu H, Liu G*, Yang H, Chen Y, Duan Y. BO-Stacking: A Novel Shear Strength Prediction Model of RC Beams with Stirrups Based on Bayesian Optimization and Model Stacking, Structures , 2023, 58, 105593 21. Liu G, Ding W, Shu J* , Strauss A, Duan Y. Two-stream boundary-aware neural network for concrete crack segmentation and quantification, Structural Control and Health Monitoring , 2023, 3301106. (JCR Q1, IF = 6.06) 22. Gao Y, Shu J* , Xiao W, Jin Z., Polyhedron-bounded collision checks for robotic assembly of structural components, Automation in Construction , 2023, 152, 104904. (JCR Q1, IF = 10.51) 23. Jiang Y, Shu J , Ye J, Zhao W*. Virtual trail assembly of prefabricated structures based on point cloud and BIM, Automation in Construction , 2023, 155, 105049. (JCR Q1, IF = 10.51) 24. Shu J , Zhang C, Chen X, Niu Y*. Model-informed deep learning strategy with vision measurement for damage identification of truss structures, Mechanical Systems and Signal Processing , 2023, 196, 110327. (JCR Q1, IF = 8.934) 25. Shu J , Zhang C, Gao Y, Niu Y*. A multi-task learning-based automatic blind identification procedure for operational modal analysis, Mechanical Systems and Signal Processing , 2023, 187: 109959. (JCR Q1, IF = 8.934) 26. Shu J , Li W, Zhang C, Gao Y*, Xiang Y, Ma L. Point cloud-based dimensional quality assessment of precast concrete components using deep learning, Journal of Building Engineering , 2023, 70: 106391. (JCR Q1, IF = 7.144) 27. Niu Y, Li J, Zhou S, Liu G, Xiang Y, Zhang H, Shu J* . Dynamic displacement estimation and modal analysis of long-span bridges integrating multi-GNSS and acceleration measurements. Journal of Infrastructure Preservation and Resilience , 2023, 4:9. 28. 周姝康,丁威, 金振奋, 俞珂, 张鹤, 舒江鹏 *. 基于三维点云重建的混凝土结构裂缝定位与追踪. 建筑科学与工程学报 , 2023, 1-9. 29. 叶建龙, 丁威, 杨涵, 周炯, 舒江鹏* . 基于深度学习的路桥表观病害检测与评估. 公路 ,2023,68(10),312-319 30. Shu J , Li W, Gao Y*. Collision-free trajectory planning for robotic assembly of lightweight structures, Automation in Construction , 2022: 104520. (JCR Q1, IF = 10.51) 31. Shu J , Ding W*, Zhang J, Lin F, Duan Y. Continual-learning-based framework for structural damage recognition, Structural Control and Health Monitoring , 2022, DOI: 10.1002/stc.3093. (JCR Q1, IF = 6.06 封面论文) 32. Shu J , Zhang C*, Yu K, Shooshtarian M, Liang P. IFC-based semantic modeling of damaged RC beams using 3D point clouds. Structural Concrete , 2022, 1-12. (JCR Q2, IF = 3.10) 33. Gao Y, Meng J, Shu J* , Liu Y. BIM-based task and motion planning prototype for robotic assembly of COVID-19 hospitalisation light weight structures. Automation in Construction , 2022, 140: 104370. (JCR Q1, IF = 10.51) 34. Zhao W, Liu Y, Zhang J, Shao Y, Shu J* . Automatic pixel‐level crack detection and evaluation of concrete structures using deep learning, Structural Control and Health Monitoring , 2022, 29, e2981. (JCR Q1, IF = 6.06 封面论文) 35. Shu, J , Li, J, Zhang, J, Zhao, W, Duan, Y, Zhang, Z*. An active learning method with difficulty learning mechanism for crack detection, Smart Structures and Systems , 2022, 39(1), 53-62. (JCR Q1, IF = 4.58 36. Zhao W, Jiang Y, Liu Y, Shu J* . Automated recognition and measurement based on three-dimensional point clouds to connect precast concrete components. Automation in Construction , 2022, 133: 104000. (JCR Q1, IF = 10.51) 37. Liu, G, Niu, Y, Zhao, W, Duan, Y, Shu, J *. Data anomaly detection for structural health monitoring using a combination network of GANomaly and CNN, Smart Structures and Systems , 2022, 39(1), 195-206. (JCR Q1, IF = 4.58) 38. Zhang C, Shu J* , Shao Y, Zhao W. Automated generation of FE models of cracked RC beams based on 3D point clouds and 2D images. Journal of Civil Structural Health Monitoring , 2022, 12: 29-46. (JCR Q2, IF = 3.33) 39. 高一帆, 舒江鹏* ,俞珂,金振奋. 基于BIM可视化编程的轻型应急结构机器人智能建造研究, 建筑结构学报 ,2022, 43(S1),294-306. 40. 舒江鹏 ,李俊,马亥波,段元锋 . 基于特征金字塔网络的超大尺寸图像的裂缝识别检测方法, 土木与环境工程学报(中英文) ,2022,44(3),29-36. 41. 丁威,马亥波, 舒江鹏* ,NIZHEGORODTSEV Denis V,叶建龙.基于残差网络的混凝土结构病害分类识别研. 建筑科学与工程学报 ,2022,39(04):127-136. 42. Tao Y, Zhao W*, Shu J , Yang Y. Nonlinear finite-element analysis of the seismic behavior of RC column–steel beam connections with shear failure mode. Journal of Structural Engineering ASCE , 2021, 147(10): 04021160. (JCR Q2, IF = 3.85) 43. Yu, K, Zhang, C, Shooshtarian, M, Zhao, W, Shu, J *. Automated finite element modeling and analysis of cracked reinforced concrete beams from three dimensional point cloud. Structural Concrete . 2021; 22: 3213– 3227. (JCR Q2, IF = 3.10) 44. Yang Y, Shu J* , Zhao W, Orr J. Shear design method for non-prismatic concrete beams reinforced using. Structures , 2021, 30: 667–677. (JCR Q2, IF = 4.01) 45. Niu Y, Ye Y, Shu J* , Zhao W, Duan Y. Identifying modal parameters of a multi-span bridge based on high-rate GNSS–RTK measurement using the CEEMD–RDT approach. Journal of Bridge Engineering, ASCE , 2021, 26(8): 04021049. (JCR Q2, IF = 3.38) 46. Niu Y, Ye Y, Zhao W, Shu J* . Dynamic monitoring and data analysis of a long-span arch bridge based on high-rate GNSS-RTK measurement combining CF-CEEMD method. Journal of Civil Structural Health Monitoring , 2020, 11: 35–48. (JCR Q2, IF = 3.33) 47. 丁威,俞珂, 舒江鹏 * . 基于深度学习和无人机的混凝土结构裂缝检测方法, 土木工程学报 ,2021,54(S1),1-12. 48. Shu J* , Bagge N, Nilimaa J. Field destructive testing of a reinforced concrete bridge deck slab. Journal of Bridge Engineering, ASCE , 2020, 25(9), 04020067. (JCR Q2, IF = 3.38) 49. Zandi K, Ransom E H, Topac T, Chen R, Beniwal S, Blomfors M, Shu J , Chang F-K. A framework for digital twin of civil infrastructure-challenges & opportunities// Structural Health Monitoring 2019 . 50. Shu J* , Plos M, Zandi K, Ashraf A. Distribution of shear force: A multi-level assessment of a cantilever RC slab. Engineering Structures , 2019, 190: 345–359. (JCR Q1, IF = 5.58) 51. Shu J* , Honfi D, Plos M, Zandi K, Magnusson J. Assessment of a cantilever bridge deck slab using multi-level assessment strategy and decision support framework. Engineering Structures , 2019, 200:109600. (JCR Q1, IF = 5.58) 52. Shu J* . Shear assessment of a reinforced concrete bridge deck slab according to level-of-approximation approach. Structural Concrete , 2018, 18: 1838–1850. (JCR Q2, IF = 3.10) 53. Shu J* , Bagge N, Plos M, Johansson M, Yang Y, Zandi K. Shear capacity of a RC bridge deck slab: comparison between multilevel assessment and field test. Journal of Structural Engineering, ASCE , 2018, 144(7): 04018081. (JCR Q2, IF = 3.85) 54. Shu J* , Belletti B, Muttoni A, Scolari M, Plos M. Internal force distribution in RC slabs subjected to punching shear. Engineering Structures , 2017, 153: 766–781. (JCR Q1, IF = 5.58) 55. Shu J* , Plos M, Johansson M, Zandi K, Nilenius F. Prediction of punching behaviour of RC slabs using continuum non-linear FE analysis. Engineering Structures , 2016, 125, 15-25. (JCR Q1, IF = 5.58) 56. Plos M, Shu J* , Zandi K, Lundgren K. A multi-level structural assessment strategy for reinforced concrete bridge deck slabs. Structure and Infrastructure Engineering , 2016, 13(2): 223–241. (JCR Q1, IF = 3.00) 57. Shu J* , Fall D, Plos M, Zandi K, Lundgren K. Development of modelling strategies for two-way RC slabs. Engineering Structures , 2015, 101: 439–449. (JCR Q1, IF = 5.58) 58. Shu J* , Plos M, Zandi K. A Multi-level Structural Assessment Proposal for Reinforced Concrete Bridge Deck Slabs. Nordic Concrete Research , 2015, 53(2): 53–56. 59. Bagge N*, Shu J , Plos M, Elfgren L. Punching Capacity of a Reinforced Concrete Bridge Deck Slab Loaded to Failure. Nordic Concrete Research , 2015, 53(2): 57–60. 60. Shu J* . Structural Analysis of Existing RC Bridge Deck Slabs. Nordic Concrete Research , 2015, 50(2): 453–456. 61. Fall D, Shu J* , Rempling R, Lundgren K, Zandi K. Two-way slabs: Experimental investigation of load redistributions in steel fibre reinforced concrete. Engineering Structures , 2014, 80: 61–74. (JCR Q1, IF = 5.58) 62. Shu J* , Zhang Z, Gonzalez I, Karoumi R. The application of a damage detection method using Artificial Neural Network and train-induced vibrations on a simplified railway bridge model. Engineering Structures , 2013, 52: 408–421. (JCR Q1, IF = 5.58)

学术兼职

中国自动化学会、美国土木工程协会、中国公路学会、中国土木工程学会等学术组织专委会委员、理事及国内外SCI/EI期刊编委会成员

推荐链接
down
wechat
bug