当前位置: X-MOL首页全球导师 国内导师 › 苏中根

个人简介

苏中根 教授 博士生导师 浙江大学数学科学学院 浙江大学统计研究所 研究方向:概率极限理论,统计大样本理论,随机矩阵,高维数据分析 学习经历 1 982.09---1986.06 安徽师范大学数学 本科生 1986.09---1989.06 杭州大学数学系 硕士研究生 1992.09---1995.06 复旦大学数学所 博士研究生 工作 经历 1989.08- 至今 杭州大学、浙江大学数学系工作 1998.1---1998.12 美国 Cornell 大学数学系访问学者 2001.2---2001.8 韩国 Yonsei 大学数学系访问学者 2002.2---2002.6 美国 Lehigh 大学数学系访问学者 2003.10---2003.12 中科院应用数学所访问学者 2006.1---2006.12 英国 Leeds 大学数学学院访问学者 2010.10---2010.12 美国 Harvard 大学数学系访问学者 2012.7---2012.8 德国 Bielefeld 大学 ZIF 访问学者 2016.7--- 2016.9 美国 Michigan State University 统计系访问学者 教学与课程 主讲本科生课程:概率论; 随机过程 主讲研究生课程:高等概率论; 测度弱收敛 科研 基金项目: 2018.1---2022.12 随机环境中的概率模型,国家自然科学基金(主参) 2014.1---2017.12 行列式点过程的概率分析,国家自然科学基金(主持) 2011.1---2013.12 随机矩阵普适性原理及其应用,国家自然科学基金(主持) 2007.1---2009.12 高维随机矩阵理论及其应用,国家自然科学基金(主持) 2004.1---2006.12 高维渗流模型的渐近理论及其应用,国家自然科学基金(主持) 2009.9--- 2012.6 随机矩阵和随机划分的概率极限理论,浙江省自然科学基金杰出青年团队项目(主持) 2011.1---2013.12 随机矩阵的概率极限理论及其应用, 教育部博士点专项基金(主持) 奖励荣誉 【1】林正炎、苏中根、张立新主编,《概率论》, 浙江大学出版社,列为十一五、十二五国家级规划教材,浙江大学2013年度十大教材 【2】林正炎、陆传荣、苏中根主编,《概率极限理论基础》,高等教育出版社, 列为九五国家级规划教材, 荣获2012年度全国普通高校优秀教材一等奖

研究领域

概率极限理论 统计大样本理论 随机矩阵 高维数据分析

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[41] Su, Zhonggen Free energy fluctuations for a mixture of directed polymers. Sci. China Math. 60 (2017), no. 3, 511–528. [40]Su, Zhonggen Tracy-Widom law with applications. (Chinese) Chinese J. Appl. Probab. Statist. 32 (2016), no. 6, 551–580. [39]Su, Zhonggen Probabilistic analysis for random integer partitions.Adv. Math. (China) 45 (2016), no. 6, 861–898. [38]Zhou, Li-kai; Su, Zhong-gen Discretization error of irregular sampling approximations of stochastic integrals. Appl. Math. J. Chinese Univ. Ser. B 31(2016), no. 3, 296–306. [37] Z.G.Su, Random Matrices and Random Partitions---Normal Convergence, World Scientific, 2015. [36] Z.G.Su, Probabilistic analysis for random integer partitions, ADVANCES IN MATHEMATICS(CHINA), V.44, No.2, 2015, doi: 10.11845/sxjz.2015004a [35] Z.G. Su, Normal convergence for random partitions with multiplicative measures, Theory of Probability and its Applications, V. 59, No. 1, 40-69, 2015 [34] Q.W. Wang, Z.G.Su, J.F.Yao, Joint CLT for several random sesquilinear forms with applications to large-dimensional spiked population models, Electron. J. Probab. 19 (2014), no. 103, 1–28. [33]Shi, Minghua; Liu, Qing; Su, Zhonggen ]Limiting behaviour of moving average processes under dependence assumption. Math. Appl. (Wuhan) 27 (2014), no. 3,507–513. [32] Z.G. Su, Fluctuations of Deformed Random Matrices, Front. Math. China, 8(3): 609–641, 2013 [31] Z.G. Su, Q.M. Shao, Asymptotics for variance of the number of zero roots of random trigonometric polynomials, Science China Mathematics, V. 55, No. 11, 2347–2366, 2012 doi: 10.1007/s11425-012-4525-5 [30] Z.G. Bao , Z.G. Su, Local Semicircle Law and Gaussian Fluctuations for Hermite Ensembles, Science China Mathematics, V.42, No.10, 1017-1030, 2012 arXiv:1104.3431. [29] Z.G. Su, On increasing subsequences of minimal Erdos - Szekeres permutations. Acta Math. Sinica, Vol.27, No.8, 1573-1580, 2011 [28] Z.G. Su, On the second order correlation of characteristic polynomials of Hermite $\beta$ ensemble, Statistics and Probability Letters, V.80, No.19-20, 1500-1507. [27] Z.G. Su, Circular β ensembles, CMV representation, characteristic polynomials, Science in China, Series A Mathematics, Vol. 52, No. 7, 2009 [26] Z.G. Su, Transition distributions of Young diagrams under periodically weighted Plancherel Measures, Acta Mathematicae Applicatae Sinica, Englsih Series, Vol. 25, No. 4, 655-674, 2009 [25] Z.G. Su, Precise asymptotics for random matrices and random growth models, Acta Math. Sinica, English Series, 24 (2008). [24] Bogachev, Leonid V.; Z.G. Su, Gaussian fluctuations of Young diagrams under the Plancherel measure. Proc. R. Soc. A 463 (2007), no. 2080, 1069--1080. [23] Bogachev, Leonid V.; Z.G. Su, Central Limit Theoremfor Random Partitions under the Plancherel Measure, Doklady Mathematics, 75 (2007), 381-384. [22] Z.G. Su, Asymptotic analysis of random partitions. Advanced Lectures in Mathematics (Higher Education Press), 2(2007),44-79. [21] Z.G. Su, Gaussian fluctuations in complex sample covariance matrices. Electron. J. Probab. 11 (2006), no. 48, 1284--1320 (electronic). [20] Shao, Qi-Man; Z.G. Su, The Berry-Esseen bound for character ratios. Proc. Amer. Math. Soc. 134 (2006), no. 7, 2153--2159. [19] Z.G. Su, Probabilistic analysis for the random assignment problem. (Chinese) Adv. Math. (China) 34 (2005), no. 2, 133--144. [18] Lee, Sungchul; Z.G. Su, The central limit theorem for the independence number for minimal spanning trees in the unit square. Stein's method and applications, 103--117, Lect. Notes Ser. nst. Math. Sci. Natl. Univ. Singap., 5, Singapore Univ. Press, Singapore, 2005. [17] Z.G. Su, The law of the iterated logarithm for character ratios. Statist. Probab. Lett. 71 (2005), no. 4, 337--346. [16] Z.G. Su, Probability limit theorems in the random assignment problem. Stochastic analysis and applications. Vol. 3, 169--180, Nova Sci. Publ., Hauppauge, NY, 2003. [15] Lee, Sungchul; Z.G. Su, On the random $n\times m$ assignment problem. Commun. Korean Math. Soc. 17 (2002), no. 4, 719--729. [14] Lee, Sungchul; Z.G. Su, Gaussian tail for empirical distributions of MST on random graphs. Statist. Probab. Lett. 58 (2002), no. 4, 363--368. [13] Lee, Sungchul; Z.G. Su, On the fluctuation in the random assignment problem. Commun. Korean Math. Soc. 17 (2002), no. 2, 321--330. [12] Lee, Sungchul; Z.G. Su, The symmetry in the martingale inequality. Statist. Probab. Lett. 56 (2002), no. 1, 83--91. [11] Su, Z. G. On central limit theorems for vector random measures and measure-valued processes. Teor. Veroyatnost. I Primenen. 46 (2001), no. 3, 513--534; translation in Theory Probab. Appl. 46 (2003), no. 3, 448—468 [10] Z.G. Su, Probability limit theorems of classical combinatorial optimization problems. J. Zhejiang Univ. Sci. Ed. 27 (2000), no. 6, 700--713. [9] Z.G. Su, A lemma on AB-percolation models in high dimension. J. Zhejiang Univ. Sci. Ed. 27 (2000), no. 6, 682--688. [8] Kesten, Harry; Z.G. Su, Asymptotic behavior of the critical probability forrho percolation in high dimensions. Probab. Theory Related Fields 117 (2000), no. 3, 419--447. [7] Kesten, Harry; Su, Zhonggen, Some remarks on AB-percolation in high dimensions. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (2000), no. 3, 1298--1320. [6] Su, Zhong Gen, On the weak convergence of vector-valued continuous random processes. Teor. Veroyatnost. i Primenen. 43 (1998), no. 3, 561--576; translation in Theory Probab. Appl. 43 (1999), no. 3, 463—476 [5] Su, Zhonggen, Central limit theorems for random processes with sample paths in exponential Orlicz spaces. Stochastic Process. Appl. 66 (1997), no. 1, 1--20. [4] Z.G. Su, The law of the iterated logarithm and Marcinkiewicz law of large numbers for B -valued U-statistics. J. Theoret. Probab. 9 (1996), no. 3, 679--701. [3]Z.G. Su, On the central limit theorem in product spaces. Appl. Math. J. Chinese Univ. Ser. B 10 (1995), no. 4, 367--378. [2] Z.G. Su, Marcinkiewicz laws of large numbers for a sequence of independent Banach space-valued random variables. (Chinese) Acta Math. Sinica 36 (1993), no. 6, 731--739. [1] Z.G. Su, Strong approximation of set-indexed processes for phi-mixing random fields. (Chinese) Acta Math. Sinica 35 (1992), no. 1, 101--111

推荐链接
down
wechat
bug