近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[41] Su, Zhonggen Free energy fluctuations for a mixture of directed polymers. Sci. China Math. 60 (2017), no. 3, 511–528.
[40]Su, Zhonggen Tracy-Widom law with applications. (Chinese) Chinese J. Appl. Probab. Statist. 32 (2016), no. 6, 551–580.
[39]Su, Zhonggen Probabilistic analysis for random integer partitions.Adv. Math. (China) 45 (2016), no. 6, 861–898.
[38]Zhou, Li-kai; Su, Zhong-gen Discretization error of irregular sampling approximations of stochastic integrals. Appl. Math. J. Chinese Univ. Ser. B 31(2016), no. 3, 296–306.
[37] Z.G.Su, Random Matrices and Random Partitions---Normal Convergence, World Scientific, 2015.
[36] Z.G.Su, Probabilistic analysis for random integer partitions, ADVANCES IN MATHEMATICS(CHINA), V.44, No.2, 2015, doi: 10.11845/sxjz.2015004a
[35] Z.G. Su, Normal convergence for random partitions with multiplicative
measures, Theory of Probability and its Applications, V. 59, No. 1, 40-69, 2015
[34] Q.W. Wang, Z.G.Su, J.F.Yao, Joint CLT for several random sesquilinear forms with applications to large-dimensional spiked population models, Electron. J. Probab. 19 (2014), no. 103, 1–28.
[33]Shi, Minghua; Liu, Qing; Su, Zhonggen ]Limiting behaviour of moving average processes under dependence assumption. Math. Appl. (Wuhan) 27 (2014), no. 3,507–513.
[32] Z.G. Su, Fluctuations of Deformed Random Matrices, Front. Math. China, 8(3): 609–641, 2013
[31] Z.G. Su, Q.M. Shao, Asymptotics for variance of the number of zero roots of random trigonometric polynomials, Science China Mathematics, V. 55, No. 11, 2347–2366, 2012 doi: 10.1007/s11425-012-4525-5
[30] Z.G. Bao , Z.G. Su, Local Semicircle Law and Gaussian Fluctuations for Hermite Ensembles, Science China Mathematics, V.42, No.10, 1017-1030, 2012 arXiv:1104.3431.
[29] Z.G. Su, On increasing subsequences of minimal Erdos - Szekeres permutations. Acta Math. Sinica, Vol.27, No.8, 1573-1580, 2011
[28] Z.G. Su, On the second order correlation of characteristic polynomials of Hermite $\beta$ ensemble, Statistics and Probability Letters, V.80, No.19-20, 1500-1507.
[27] Z.G. Su, Circular β ensembles, CMV representation, characteristic polynomials, Science in China, Series A Mathematics, Vol. 52, No. 7, 2009
[26] Z.G. Su, Transition distributions of Young diagrams under periodically weighted Plancherel Measures, Acta Mathematicae Applicatae Sinica, Englsih Series, Vol. 25, No. 4, 655-674, 2009
[25] Z.G. Su, Precise asymptotics for random matrices and random growth models, Acta Math. Sinica, English Series, 24 (2008).
[24] Bogachev, Leonid V.; Z.G. Su, Gaussian fluctuations of Young diagrams under the Plancherel measure. Proc. R. Soc. A 463 (2007), no. 2080, 1069--1080.
[23] Bogachev, Leonid V.; Z.G. Su, Central Limit Theoremfor Random Partitions under the Plancherel Measure, Doklady Mathematics, 75 (2007), 381-384.
[22] Z.G. Su, Asymptotic analysis of random partitions. Advanced Lectures in Mathematics (Higher Education Press), 2(2007),44-79.
[21] Z.G. Su, Gaussian fluctuations in complex sample covariance matrices. Electron. J. Probab. 11 (2006), no. 48, 1284--1320 (electronic).
[20] Shao, Qi-Man; Z.G. Su, The Berry-Esseen bound for character ratios. Proc. Amer. Math. Soc. 134 (2006), no. 7, 2153--2159.
[19] Z.G. Su, Probabilistic analysis for the random assignment problem. (Chinese) Adv. Math. (China) 34 (2005), no. 2, 133--144.
[18] Lee, Sungchul; Z.G. Su, The central limit theorem for the independence number for minimal spanning trees in the unit square. Stein's method and applications, 103--117, Lect. Notes Ser. nst. Math. Sci. Natl. Univ. Singap., 5, Singapore Univ. Press,
Singapore, 2005.
[17] Z.G. Su, The law of the iterated logarithm for character ratios. Statist. Probab. Lett. 71 (2005), no. 4, 337--346.
[16] Z.G. Su, Probability limit theorems in the random assignment problem. Stochastic analysis and applications. Vol. 3, 169--180, Nova Sci. Publ., Hauppauge, NY, 2003.
[15] Lee, Sungchul; Z.G. Su, On the random $n\times m$ assignment
problem. Commun. Korean Math. Soc. 17 (2002), no. 4, 719--729.
[14] Lee, Sungchul; Z.G. Su, Gaussian tail for empirical distributions of MST on random graphs. Statist. Probab. Lett. 58 (2002), no. 4, 363--368.
[13] Lee, Sungchul; Z.G. Su, On the fluctuation in the random assignment problem. Commun. Korean Math. Soc. 17 (2002), no. 2, 321--330.
[12] Lee, Sungchul; Z.G. Su, The symmetry in the martingale inequality. Statist. Probab. Lett. 56 (2002), no. 1, 83--91.
[11] Su, Z. G. On central limit theorems for vector random measures and measure-valued processes. Teor. Veroyatnost. I Primenen. 46 (2001), no. 3, 513--534; translation in Theory Probab. Appl. 46 (2003), no. 3, 448—468
[10] Z.G. Su, Probability limit theorems of classical combinatorial optimization problems. J. Zhejiang Univ. Sci. Ed. 27 (2000), no. 6, 700--713.
[9] Z.G. Su, A lemma on AB-percolation models in high dimension. J. Zhejiang Univ. Sci. Ed. 27 (2000), no. 6, 682--688.
[8] Kesten, Harry; Z.G. Su, Asymptotic behavior of the critical probability forrho percolation in high dimensions. Probab. Theory Related Fields 117 (2000), no. 3, 419--447.
[7] Kesten, Harry; Su, Zhonggen, Some remarks on AB-percolation in high dimensions. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (2000), no. 3, 1298--1320.
[6] Su, Zhong Gen, On the weak convergence of vector-valued continuous random processes. Teor. Veroyatnost. i Primenen. 43 (1998), no. 3, 561--576; translation in Theory Probab. Appl. 43 (1999), no. 3, 463—476
[5] Su, Zhonggen, Central limit theorems for random processes with sample paths in exponential Orlicz spaces. Stochastic Process. Appl. 66 (1997), no. 1, 1--20.
[4] Z.G. Su, The law of the iterated logarithm and Marcinkiewicz law of large numbers for B -valued U-statistics. J. Theoret. Probab. 9 (1996), no. 3, 679--701.
[3]Z.G. Su, On the central limit theorem in product spaces. Appl. Math. J. Chinese Univ. Ser. B 10 (1995), no. 4, 367--378.
[2] Z.G. Su, Marcinkiewicz laws of large numbers for a sequence of independent Banach space-valued random variables. (Chinese) Acta Math. Sinica 36 (1993), no. 6, 731--739.
[1] Z.G. Su, Strong approximation of set-indexed processes for phi-mixing random fields. (Chinese) Acta Math. Sinica 35 (1992), no. 1, 101--111