近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1 . S. L. Wu, L. Yan, T. Zhou, Z. Zhou, Operator learning based coarse solver for Parareal , preprint , 2025.
2 . Y.Y. Wang, L.Yan, Data-driven operator inference for parameter estimation in nonlinear partial differential equation , J. Comput. Phy. , 544: 114442, 2026.
3 . Y. W. Yin, L.Yan, A novel direct imaging method for passive inverse obstacle scattering problem , Inverse Problems and Imaging , 20: 368-389, 2026.
4 . Y. W. Yin, L.Yan, TDDM: A transfer learning framework for physics-guided 3D obstacle scattering inversion , J. Comput. Phy. , 539: 114211, 2025.
5 . Y.Y. Wang, L.Yan, T. Zhou, Deep learning-enhanced reduced-order ensemble Kalman filter for efficient Bayesian data assimilation of parametric PDEs , Comput. Phys. Commun. , 311: 109544, 2025.
6. Y.W. Yin, L. Yan, Physics-aware deep learning framework for the limited aperture inverse obstacle scattering problem , SIAM J. Sci. Comput., 47(2):C313-C342, 2025.
7 . Z.W. Gao, L. Yan, T. Zhou, Adaptive operator learning for infinite-dimensional Bayesian inverse problems , SIAM/ASA J. Uncertainty Quantification, 12(4):1389-1423, 2024 .
8 . Y.W. Yin (尹运文), L. Yan, Bayesian model error method for the passive inverse scattering problem , Inverse Problem, 40: 065005, 2024 .
9 . H. Gu, X. Xu, L. Yan, Inverse elastic scattering by random periodic structures , J. Comput. Phy. , 501: 112785, 2024.
10. W.B. Liu , L. Yan, T. Zhou, Y.C. Zhou, Failure-informed adaptive sampling for PINNs, Part III: applications to inverse problems , CSIAM Trans. Appl. Math., 5(3):636-670, 2024 .
11 . Z.W. Gao , T. Tang, L. Yan, T. Zhou, Failure-informed adaptive sampling for PINNs, Part II: combining with re-sampling and subset simulation , Commun. Appl. Math. Comput. , 6: 1720-1741, 2024 (Invited contribution to a special issue for Prof. Remi Abgrall 's 61th birthday).
12 . Z.W. Gao(高志伟) , L. Yan, T. Zhou, Failure-informed adaptive sampling for PINNs , SIAM J. Sci. Comput., 45(4): A1971-A1994, 2023.( Highly Cited Paper,Hot Paper, code )
13 . Y. Y. Wang(王艳艳), Q. Li(李倩), L.Ya n, Adaptive ensemble Kalman inversion with statistical linearization, C ommu n. Comput. Phy. , 33:1357-1380, 2023.
14 . Y.C. Li(李勇超),Y. Y. Wang (王艳艳) , L.Yan , Surrogate modeling for Bayesian inverse problems based on physics-informed neural networks , J. Comput. Phy. , 475:111841, 2023.
15 . L. Yan, T. Zhou, Stein variational gradient descent with local approximations , Comput. Meth. Appl. Mech. Eng. , 386: 114087, 2021 .
16 . L. Yan, X.L. Zou(邹熙灵), Gradient-free Stein variational gradient descent with kernel approximation , Appl. Math. Letters , 121: 107465, 2021.
17 . L. Yan, T. Zhou, An acceleration strategy for randomize-then-optimize sampling via deep neural networks, J. Comput. Math. , 39(6):848-864, 2021.
18 . A. Narayan, L. Yan , T. Zhou. Optimal design for the kernel interpolation: applications to uncertainty quantification, J. Comput. Phy. , 430:110094, 2021 .
19 . L. Yan, T. Zhou, An a daptive surrogate modeling based on deep neural networks for large-scale Bayesian inverse problems , Commun. Comput. Phy., 28: 2180-2205, 2020. ( A special issue on Machine Learning for Scientific Computing )
20 . F.L. Yang, L. Yan, A non-intrusive reduced basis EKI for time-fractional diffusion inverse problems , Acta Math. Appl.Sinica-English Serier, 36(1):183-202, 2020. ( A s pecial issue for IP )
21 . L. Yan , T. Zhou. Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems, J. Comput. Phy. , 381: 110-128, 2019.
22 . L.Yan , T. Zhou. An adaptive multi-fidelity PC-based ensemble Kalman inversion for inverse problems, Int. J. Uncertainty Quantification , 9(3):205-220, 2019.
23 . Y.X. Zhang, J.X. Jian, L. Yan, Bayesian approach to a nonlinear inverse problem for time-space fractional diffusion equation , Inverse Problems , 34:125002(19pp), 2018.
24 . F.L. Yang, L. Yan , L. Ling. Doubly stochastic radial basis function me thods , J. Comput. Phy., 363: 87-97, 2018.
25 . L. Guo, A. Narayan, L. Yan , T. Zhou . Weighted approximate Fekete points: sampling for least-squares polynomial approximation , SIAM J. Sci. Comput., 40 (1), A366-A387, 2018.
26 . L. Yan , Y. X. Zhang. Convergence analysis of surrogate-based methods for Bayesian inverse problems , Inverse Problems , 33:125001(20pp), 2017.
27 . L. Guo, Y. Liu, L. Yan , Sparse recovery via lq-minimization for polynomial chaos expansions , Numer. Math. Theor. Meth. Appl., 10(4):775-797, 2017.
28. L. Yan , Y. Shin, D. Xiu. Sparse approximation using L1-L2 minimization and its application to stochastic collocation SIAM J. Sci. Comput., 39(1): A229–A254, 2017.
29. Y.X.Zhang, L. Yan . The general a posteriori truncation method and its application to radiogenic source identification for the Helium production-diffusion equation , Appl. Math. Model., 43 :126- 138, 2017.
30. J.J. Liu, M. Yamamoto, L. Yan . On the reconstruction of unknown boundary sources for time fractional diffusion process by nonlocal measurement . Inverse Problems, 32(1): 015009, 2016.
31. L. Yan , L. Guo . Stochastic collocation algorithms using l1-minimization for Bayesian solution of inverse problems, SIAM J. Sci. Comput., 37(3): A1410–A1435, 2015.
32. L. Yan , F. L. Yang. The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition , Comput. Math. Appl., 70:254-264, 2015.
33. J.J.Liu, M. Yamamoto, L. Yan . On the uniqueness and reconstruction for an inverse problem of the fractional diffusion process , Appl. Numer. Math., 87:1-19, 2015.
34. L. Yan , F.L Yang. Efficient Kansa-type MFS algorithm for time-fractional inverse diffusion problems , Comput. Math. Appl., 2014, 67:1507-1520.
35. L. Yan , F.L. Yang. A Kansa-type MFS scheme for two-dimensional time fractional diffusion equations , Eng. Anal. Bound. Eleme., 2013, 37 (11): 1426–1435.
36. H. F. Zhao, L. Yan , J. J. Liu. On the interface identification of free boundary problem by method of fundamental solution. Numer. Linear Algebra Appl., 2013, 20 (2) : 385-396.
37. L. Yan , L. Guo, D.Xiu. Stochastic collocation algorithms using L1-minimization , Int. J. Uncertainty Quantification , 2012, 2(3): 279–293 . (Highly Cited Paper )
38. L. Yan , F. L. Yang, C. L. Fu. A new numerical method for the inverse source problems from a Bayesian statistical perspective. Int. J. Numer. Meth. Eng., 2011, 85:1460-1474
39. Y.X. Zhang, C. L. Fu, L. Yan . Approximate inverse method for stable analytic continuation in a strip domain. J. Comput. Appl. Math. , 2011, 235: 1979-1992
40. L. Yan , C. L. Fu, F. F. Dou. A computational method for identifying a spacewise-dependent heat source. Int. J. Numer. Meth. Biomedical Eng. , 2010,26: 597-608
41. L. Yan , F. L.Yang, C.L.Fu. A meshless method for solving an inverse spacewise-dependent heat source problem . J. Comput. Phy. , 2009, 228(1):123-136
42. F. L. Yang, L. Yan , T. Wei. The identification of a Robin coefficient by a conjugate gradient method. Int. J. Numer. Meth. Eng. , 2009,78:800-816
43. L. Yan , F. L. Yang, C. L. Fu. A Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems. J. Comput. Appl. Math. , 2009, 231(2):840-850
44. F. L. Yang, L. Yan , T. Wei. Reconstruction of part of a boundary for the Laplace equation by using a regularized method of fundamental solution. Inverse Problems Sci. Eng. , 2009,17(8):1113-1128.
45. F. L. Yang, L. Yan , T. Wei. Reconstruction of the corrosion boundary for the Laplace equation by using a boundary collocation method. Math. Comput. Simu. , 2009,79(7):2148-2156
46. L. Yan , C. L. Fu, F. L. Yang. The method of fundamental solutions for the inverse heat source problem. Eng. Anal. Bound. Elem. , 2008, 32(3) :216-222.
学术兼职
中国工业与应用数学学会(CSIAM)理事、CSIAM不确定性量化专委会委员、CSIAM反问题与成像专委会委员
Editorial Board :
Associate Editor: Numerical Mathematics: Theory, Methods and Applications , 2025.1-
Editor Board: 数值计算与计算机应用 , 2024.1-
审稿人:
SISC,SIAM-MMS, SIAM-JUQ, JCP, IP, CMAME, JSC, CiCP, IJNME, IJ4UQ, Neural Network, AMM, CMA, IPSE, JIIP, AML, AA, I.J. Heat Mass Trans., EABE, IEEE Systems, Man and Cybernetics: Systems; IEEE Signal Processing Letters; Knowledge-Based Systems; Neurocomputing ......