当前位置: X-MOL首页全球导师 国内导师 › 李大韦

个人简介

李大韦,男,1987年10月出生,教授,博士生导师,交通工程专业负责人,低空交通与智慧机场大团队协调人。本硕毕业于东南大学交通学院,博士毕业于日本名古屋大学,2014年起任职于东南大学,曾在日本名古屋大学、新加坡-麻省理工联合研发中心(SMART)、香港理工大学从事科研工作。先后主持国家自然科学基金项目 2项、国家重点研发计划青年科学家课题课题 1 项、国家重点研发项目子课题 2 项、国家自然科学基金国合重点项目子课题 1 项、江苏省自然科学基金项目 1项(验收评价为优秀),参与国家及省部级项目10 余项, 发表 SCI&SSCI 论文近 50 篇,授权发明专利 30 余项、软著 3项,分别在日本(与米其林、丰田公司合作项目)、新加坡(麻省理工 SimMobility 项目)、中国(独立开发 SimTrend多模式交通仿真软件)参与 3项多模式交通系统建模与仿真软件开发。与携程、腾讯、华设、莱斯、交通部公路院、交通部科研院、智加、东软等国内外企业与行业单位有合作关系。承担《交通工程基础》 等5 门课程的教学工作。指导学生获省优本科毕业设计、挑战杯大赛全国特等奖、华为ICT大赛一等奖、交科赛国赛、省赛一等奖。荣获中国公路学会科学技术奖一等奖(排1/15),江苏省科学技术奖二等奖(排 2/11),中国运输协会科技进步一等奖(排5/15),中国交通教育优秀中青年教师奖、国家级教学成果二等奖、江苏省教学成果特等奖、东南大学教学成果奖特等奖。 教育背景 2004-2008 ,东南大学,交通工程专业,学士学位; 2009-2011 ,东南大学,交通运输规划与管理专业,硕士学位; 2011-2014 ,名古屋大学(日本),城市环境专业,博士学位。 工作经历 2023 -至今,东南大学 , 交通学院 , 教授 , 东南大学交通工程系副主任 , 东南大学应急交通研究中心副主任 2018-2020, 香港理工大学 , CEE, 香江学者 2019, 名古屋大学 Institute of Materials and Systems for Sustainability (IMaSS) ,特任准教授 2017-2023 ,东南大学 , 交通学院 , 副教授、博导,城市智能交通省重点实验室秘书(曾任),交通工程研究所副所长(曾任),交通工程系副主任(现任) 2014-2017, 东南大学 , 交通学院 , 讲师 2014 ,名古屋大学 Green Mobility Collaborative Research Center ,博士后研究员 2013 , Singapore-MIT Alliance for Research and Technology ,研究助理 (合作导师: Moshe Ben-Akiva 教授,麻省理工学院) 2008-2009 ,内蒙古准格尔旗第一中学,支教志愿者

研究领域

交通行为分析与政策评价 AI+ 多模式交通系统建模与仿真 智慧出行服务 自动驾驶与自主式交通系统等

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] Javeed, M. A., Li, D., & Ashraf, M. A. (2025). Urban city data delivery optimization in VNDN using a route-based caching approach with content-type awareness in intelligent transportation system. The Journal of Supercomputing , 81 (6), 784. [2] Liu, D., Li, D., Gao, K., Song, Y., & Zhou, Z. (2025). Context-aware inverse reinforcement learning for modeling individuals’ daily activity schedules. Engineering Applications of Artificial Intelligence , 146 , 110279. [3] Zhang, T., Li, D., Song, Y., Zhang, J., Yang, J., & Shi, Y. (2025). Activity capacity-based urban shrinkage trend prediction model and response strategy comparison approach. Transportation Research Part E: Logistics and Transportation Review , 194 , 103929. [4] Zhang, T., Li, D., & Song, Y. (2025). Urban Rail Transit Congestion Management: Coordinated Optimization of Passenger Guidance and Train Scheduling with Skip-Stop Patterns. Journal of Transportation Engineering, Part A: Systems , 151 (2), 04024101. [5] Song, Y., Li, D., Ma, Z., Zhang, T., Liu, D., & He, C. (2024). Dynamic Recursive Logit Model for Vehicle Driving Route Choices and Path Inference With Incomplete Fixed Location Sensor Data. IEEE Transactions on Intelligent Transportation Systems . [6] Liu, D., Li, D., Gao, K., Song, Y., & Zhang, T. (2024). Enhancing choice-set generation and route choice modeling with data-and knowledge-driven approach. Transportation Research Part C: Emerging Technologies , 162 , 104618. [7] Song, Y., Li, D., Ma, Z., Liu, D., & Zhang, T. (2024). A state-based inverse reinforcement learning approach to model activity-travel choices behavior with reward function recovery. Transportation Research Part C: Emerging Technologies , 158 , 104454. [8] Song, Y., Li, D., Liu, D., Cao, Q., Chen, J., Ren, G., & Tang, X. (2022). Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity. Transportation research part E: logistics and transportation review , 167 , 102914. [9] Wang, J, Miwa, T, Ma, X, Li, D., & Morikawa, T. (2023). Recovering Real Demand for Free-Floating BikeSharing System Considering Demand Truncation Migration, and Spatial Correlation. IEEE Transactions on Intelligent Transportation Systems. Accepted. [10] Liu, D., Li, D., Sze, N. N., Ding, H., & Song, Y. (2023). An integrated data-and theory-driven crash severity model. Accident Analysis & Prevention, 193, 107282. [11] Cao, Q., Deng, Y., Ren, G., Liu, Y., Li, D., Song, Y., & Qu, X. (2023). Jointly estimating the most likely driving paths and destination locations with incomplete vehicular trajectory data. Transportation Research Part C: Emerging Technologies, 155, 104283. [12] Jin, C. J., Shi, K. D., Jiang, R., Li, D., & Fang, S. (2023). Simulation of bi-directional pedestrian flow under high densities using a modified social force model. Chaos, Solitons & Fractals, 172, 113559. [13] Li, D., Song, Y., Liu, D., Cao, Q., & Chen, J. (2023). How carpool drivers choose their passengers in Nanjing, China: effects of facial attractiveness and credit. Transportation, 50(3), 929-958. [14] Li, D., Feng, S., Song, Y., Lai, X., & Bekhor, S. (2023). Asymmetric closed-form route choice models: Formulations and comparative applications. Transportation research part A: policy and practice, 171, 103627. [15] Li, D., Dai, Q., Zhang, T., & Shi, X. (2023). Long-Term Individual Trip Pattern Prediction of Bus Passengers Using Smart Card Data: A Bayesian Method Based on Feature Selection. [16] Chen, Q., Zhang, H., Song, Y., Huang, D., Li, D., & Wang, H. (2022). Analysis of Perception Variance in Regret Choice Modeling Based on GPS Data Considering Building Environment Effects. Journal of Advanced Transportation, 2022. [17] Shi, X., Xue, S., Shiwakoti, N., Li, D., & Ye, Z. (2022). Examining the effects of exit layout designs on children pedestrians’ exit choice. Physica A: statistical mechanics and its applications, 602, 127654. [18] Li, D., Al-Mahamda, M. F., Song, Y., Feng, S., & Sze, N. N. (2022). An alternate crash severity multicategory modeling approach with asymmetric property. Analytic methods in accident research, 35, 100218. [19] Li, D., Liu, Y., Song, Y., Ye, Z., & Liu, D. (2022). A Framework for Assessing Resilience in Urban Mobility: Incorporating Impact of Ridesharing. International Journal of Environmental Research and Public Health, 19(17), 10801. [20] 梁顺利 ; 李香红 ; 李大韦 ; 郑兰兰 ; 宋晖颖 . (2022) 疫情下安装共享电动车头盔消毒装置博弈 . 交通科技与经济 , 24(4), 23. [21] Wang, Y., Ren, G., & Li, D. (2022). Activity-Travel Demand Modeling Based on Multi-Agent Simulation. In CICTP 2022 (pp. 1492-1502). [22] 李大韦 ; 冯思齐 ; 曹奇 ; 宋玉晨 ; 赖信君 ; 任刚 . (2021) 大数据背景下的路径选择行为建模,中国公路学报 2021, 34(12): 161-174 [23] Song, Y., Li, D., Cao, Q., Yang, M., Ren, G. (2021) The whole day path planning problem incorporating mode chains modeling in the era of mobility as a service. Transportation Research Part C: Emerging Technologies 132, 103360. [24] Li, D., Song, Y., Sze, N., Li, Y., Miwa, T., Yamamoto, T. (2021) An alternative closedform crash severity model with the non-identical, heavy-tailed, and asymmetric properties. Accident Analysis & Prevention 158, 106192. [25] Ma, J., Li, D., Tu, Q., Du, M., Jiang, J. (2021) Finding optimal reconstruction plans for separating trucks and passenger vehicles systems at urban intersections considering environmental impacts. Sustainable Cities and Society 70, 102888. [26] Yuan, Y., Yang, M., Feng, T., Rasouli, S., Li, D., Ruan, X. (2021) Heterogeneity in passenger satisfaction with air-rail integration services: Results of a finite mixture partial least squares model. Transportation Research Part A: Policy and Practice 147, 133-158. [27] Jin, C.-J., Jiang, R., Liu, T., Li, D., Wang, H., Liu, X. (2021) Pedestrian dynamics with different corridor widths: Investigation on a series of uni-directional and bi-directional experiments. Physica A: Statistical Mechanics and its Applications 581, 126229. [28] Shi, X., Xue, S., Feliciani, C., Shiwakoti, N., Lin, J., Li, D., Ye, Z. (2021) Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions. Physica A: Statistical Mechanics and its Applications 562, 125347. [29] Jin, C.-J., Shi, X., Hui, T., Li, D., Ma, K. (2021) The automatic detection of pedestrians under the high-density conditions by deep learning techniques. Journal of advanced transportation 2021. [30] Xue, S., Shi, X., Jiang, R., Feliciani, C., Liu, Y., Shiwakoti, N., Li, D. (2021) Incentivebased experiments to characterize pedestrians’ evacuation behaviors under limited visibility. Safety Science 133, 105013. [31] Cao, Q., Ren, G., Li, D., Li, H., Ma, J. (2021) Map Matching for Sparse Automatic Vehicle Identification Data. IEEE Transactions on Intelligent Transportation Systems. [32] Li, D., Yang, M., Jin, C.-J., Ren, G., Liu, X., Liu, H. (2020) Multi-Modal Combined Route Choice Modeling in the MaaS Age Considering Generalized Path Overlapping Problem. IEEE Transactions on Intelligent Transportation Systems 22, 2430-2441. [33] Li, D., Al-Mahamda, M.F. (2020) Collective risk ranking of highway segments on the basis of severity-weighted crash rates. Journal of advanced transportation 2020. [34] Cao, Q., Ren, G., Li, D., Ma, J., Li, H. (2020) Semi-supervised route choice modeling with sparse Automatic vehicle identification data. Transportation Research Part C: Emerging Technologies 121, 102857. [35] Li, D., Jin, C.-j., Yang, M., Chen, A. (2020) Incorporating multi-level taste heterogeneity in route choice modeling: From disaggregated behavior analysis to aggregated network loading. Travel Behaviour and Society 19, 36-44. [36] Jin, C.-J., Jiang, R., Li, D.-W. (2020) Influence of bottleneck on single-file pedestrian flow: Findings from two experiments. Chinese Physics B 29, 088902. [37] Li, D., Miwa, T., Xu, C., Li, Z. (2019) Non-linear fixed and multi-level random effects of origin–destination specific attributes on route choice behaviour. IET Intelligent Transport Systems 13, 654-660. [38] Jin, C.-J., Jiang, R., Wong, S., Xie, S., Li, D., Guo, N., Wang, W. (2019) Observational characteristics of pedestrian flows under high-density conditions based on controlled experiments. Transportation research part C: emerging technologies 109, 137-154. [39] Jin, C.-J., Jiang, R., Liang, H.-F., Li, D., Wang, H. (2019) The similarities and differences between the empirical and experimental data: investigation on the single-lane traffic. Transportmetrica B: transport dynamics. [40] Jin, C.-J., Jiang, R., Li, R., Li, D. (2019) Single-file pedestrian flow experiments under high-density conditions. Physica A: Statistical Mechanics and its Applications 531, 121718. [41] Tu, Q., Cheng, L., Li, D., Ma, J., Sun, C. (2019) Traffic paradox under different equilibrium conditions considering elastic demand. Promet-Traffic&Transportation 31, 1-9. [42] Jin, C.-J., Knoop, V.L., Li, D., Meng, L.-Y., Wang, H. (2019) Discretionary lane-changing behavior: empirical validation for one realistic rule-based model. Transportmetrica A: transport science 15, 244-262. [43] Jin, C.-J., Jiang, R., Wei, W., Li, D., Guo, N. (2018) Microscopic events under high-density condition in uni-directional pedestrian flow experiment. Physica A: Statistical Mechanics and its Applications 506, 237-247. [44] Lou, X., Cheng, L., Li, D., Zhu, S., Zhou, J. (2018) Modeling Day-to-Day Dynamics of Travelers’ Risky Route Choices under the Influence of Predictive Traffic Information. Transp. Res. Record 2672, 12-23. [45] Ma, J., Li, D., Cheng, L., Lou, X., Sun, C., Tang, W. (2018) Link restriction: Methods of testing and avoiding braess paradox in networks considering traffic demands. Journal of Transportation Engineering, Part A: Systems 144, 04017076. [46] Xu, C., Li, D., Li, Z., Wang, W., Liu, P. (2018) Utilizing structural equation modeling and segmentation analysis in real-time crash risk assessment on freeways. KSCE Journal of Civil Engineering 22, 2569-2577. [47] Li, Z., Xu, C., Li, D., Liu, P., Wang, W. (2018) Comparing the effects of ramp metering and variable speed limit on reducing travel time and crash risk at bottlenecks. IET Intelligent Transport Systems 12, 120-126. [48] Yang, M., Wu, J., Rasouli, S., Cirillo, C., Li, D. (2017) Exploring the impact of residential relocation on modal shift in commute trips: Evidence from a quasi-longitudinal analysis. Transport Policy 59, 142-152. [49] Li, D., Hu, X., Jin, C.-j., Zhou, J. (2017) Learning to detect traffic incidents from data based on tree augmented naive bayesian classifiers. Discrete Dynamics in Nature and Society [50] Jin, C.-J., Jiang, R., Yin, J.-L., Dong, L.-Y., Li, D. (2017) Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior. Physica A: Statistical Mechanics and its Applications 482, 666-681. [51] Li, D., Miwa, T., Morikawa, T. (2016) Modeling time-of-day car use behavior: A Bayesian network approach. Transportation research part D: transport and environment 47, 54-66. [52] Li, D., Miwa, T., Morikawa, T., Liu, P. (2016) Incorporating observed and unobserved heterogeneity in route choice analysis with sampled choice sets. Transportation research part C: emerging technologies 67, 31-46. [53] Li, D., Miwa, T., Morikawa, T. (2015) Analysis of Vehicles' Daily Fuel Consumption Frontiers with Long-Term Controller Area Network Data. Transp. Res. Record 2503, 100-109. [54] Li, D., Miwa, T., Morikawa, T. (2014) Analysis of car usage time frontiers incorporating both inter-and intra-individual variation with GPS data. Transp. Res. Record 2413, 13-23. [55] Li, D., Miwa, T., Morikawa, T. (2014) Considering en-route choices in utility-based route choice modelling. Networks and Spatial Economics 14, 581-604. [56] Li, D., Miwa, T., Morikawa, T. (2013) Dynamic route choice behavior analysis considering en-route learning and choices. Transp. Res. Record 2383, 1-9. [57] Li, D., Miwa, T., Morikawa, T. (2013) Use of Private Probe Data in Route Choice Analysis to Explore Heterogeneity in Drivers' Familiarity with Origin–Destination Pairs. Transp. Res. Record 2338, 20-28. [58] Li, D., Cheng, L., Ma, J. (2011) Incident duration prediction based on latent Gaussian naïve Bayesian classifier. International Journal of Computational Intelligence Systems 4, 345-352.

学术兼职

[1] 中国交通教育研究会高教研究分会理事, 2020 [2] 中国公路学会自动驾驶工作委员会委员, 2019 [3] 世界交通运输大会( WTC ) 交通感知与大数据学科主席,2024 交通工程学部秘书, 2019 多模式交通网络规划技术委员会主席, 2019 面向未来的城市综合交通系统技术委员会主席, 2017 [4] 交通运输工程学报(英文版)青年学术编辑 ,2020 [5] 交通运输部公交都市建设示范工程验收专家, 2019 [6] 腾讯 “ 犀牛鸟精英人才培养计划 ” 专家组成员, 2019 [7] 《 Frontier in Built Environment 》 , 审稿编辑, 2022 [8] 江苏省智慧低空飞行管服重点实验室,学术委员会成员 [9] Social Sciences & Humanities Open,编委会成员 [10]《青年科学与工程》青年编委 [11] Digital Transportation and Safety,青年编委 [12] 名古屋大学(日本),(IMaSS),客座准教授(短期)

推荐链接
down
wechat
bug