当前位置: X-MOL首页全球导师 海外导师 › Armstrong, Fraser

研究领域

Inorganic Chemistry

Applications of Chemical Biology to future energy technologies, Physical chemistry approaches (Electrochemistry, Spectroscopy, Nanoparticles, Photochemistry) for studying and exploiting metalloenzymes, Catalysis, Hydrogen and Biohydrogen production, Enzyme-based Fuel Cells, Reduction of CO2 We have several research programs, each investigating and exploiting the important and exquisite reactivities of redox-active sites and metal centres (Fe, Ni, Cu, Mo) in enzymes. We are developing new directions and applying a range of powerful physical techniques, particularly dynamic electrochemical methods, EPR spectroscopy and light-driven enzyme catalysis on nanoparticles. We have several goals.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Oxygen Tolerant [NiFe]-Hydrogenases: the Individual and Collective Importance of Supernumerary Cysteines at the Proximal Fe S Cluster. M. J. Lukey, M. M. Roessler, A. Parkin, R. M. Evans, R. A. Davies, O. Lenz, B. Friedrich, F. Sargent and F. A. Armstrong. J. Amer. Chem. Soc. 133, 16881–16892 (2011). Reversibility and Efficiency in Electrocatalytic Energy Conversion and Lessons from Enzymes. F. A. Armstrong and J. Hirst. Proc. Natl. Acad. Sci. USA 108, 14049-14054 (2011). CO2 Photoreduction at Enzyme-modified Metal Oxide Nanoparticles. T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale and F. A. Armstrong. Energy Environ. Science 4, 2393-2399 (2011). Theoretical and Experimental Investigation of Surface-Confined Two-center Metalloproteins by Large-Amplitude Fourier Transformed AC Voltammetry. C-Y. Lee, G. P. Stevenson, A. Parkin, M. M. Roessler, Ruth E. Baker, K. Gillowe, D. J. Gavaghan, F. A. Armstrong and A. M. Bond. J. Electroanal. Interfacial Electrochem. 656, 293-303 (2011). A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase T. Goris, A. F Wait, M. Saggu, J. Fritsch1, N. Heidary, M. Stein, I. Zebger, F. Lendzian, F. A Armstrong, B. Friedrich1 and O. Lenz. Nature Chemical Biology, 7, 310-318 (2011). Formaldehyde – a Rapid and Reversible Inhibitor of Hydrogen Production by [FeFe]-Hydrogenases. A. F. Wait, C. Brandmayr, S. T. Stripp, C. Cavazza, J. C. Fontecilla-Camps, T. Happe and F. A. Armstrong. J. Amer. Chem. Soc. 133, 1282-1285 (2011). Mechanistic Studies of the ‘Blue’ Cu Enzyme, Bilirubin Oxidase, as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. L. dos Santos, V. Climent, C. F. Blanford and F A. Armstrong. PhysChemChemPhys. 12, 13962–13974 (2010). Uncoupling Nitrogenase: Catalytic Reduction of Hydrazine to Ammonia by a MoFe Protein in the Absence of Fe Protein-ATP. K. Danyal, B. S. Inglet, K. A. Vincent, B. M. Barney, B. M. Hoffman, F. A. Armstrong, D. R. Dean and L. C. Seefeldt. J. Amer. Chem. Soc. 132, 13197-13199 (2010). The Importance of Enzymes: Benchmarks for Electrocatalysts. F. A. Armstrong, in Fuel Cell Science: Theory, Fundamentals, and Biocatalysis ( A. Wieckowski and J. K. Nørskov, eds.) John Wiley & Sons, Inc. (2010) pp. 237-255. Characteristics of Enzyme-based Hydrogen Fuel cells using an Oxygen-Tolerant Hydrogenase as the Anodic Catalyst. A. F. Wait, A. Parkin, G. M. Morley, L. dos Santos and F. A. Armstrong. J. Phys. Chem. C. 114, 12003–12009 (2010). Efficient and clean photo-reduction of CO2 to CO by enzyme-modified TiO2 nanoparticles T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale and F. A. Armstrong. J. Amer. Chem. Soc. 132, 2132-2133 (2010). Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I from Bos taurus by double electron-electron resonance (DEER) spectroscopy. M. M. Roessler, M. S. King, A. J. Robinson, F. A. Armstrong, J. Harmer and J. Hirst. Proc. Natl. Acad. Sci. USA 107, 1930-1935 (2010). How E. coli is equipped to Oxidize Hydrogen under Different Redox Conditions M. J. Lukey, A. Parkin, M. M. Roessler, B. J. Murphy, J. Harmer, T. Palmer, F. Sargent and F. A. Armstrong. J. Biol. Chem. 285, 3928-3938 (2010). Designer laccases: a vogue for high-potential fungal enzymes? C. J. Rodgers, C. F. Blanford, S. R. Giddens, F. A. Armstrong, P. Skamnioti and S. J. Gurr. Trends in Biotechnology, 28, 63-72 (2010). Visible Light Driven H2 Production by Hydrogenases Attached to Dye-sensitized TiO2 Nanoparticles. E. Reisner, D. Powell, C. Cavazza, J. Fontecilla-Camps and F. A. Armstrong. J. Amer. Chem. Soc. 131, 18457-18466 (2009). A Kinetic and Thermodynamic Understanding of O2 Tolerance in [NiFe]-Hydrogenases J. A. Cracknell, A. F. Wait, O. Lenz, B. Friedrich and F. A. Armstrong. Proc. Natl. Acad. Sci. USA 106, 20681-20686 (2009). Dynamic electrochemical experiments on hydrogenases. F. A. Armstrong. Photosynth. Res. 102, 541-550 (2009). How Oxygen attacks [FeFe] Hydrogenases from photosynthetic Organisms. S. Stripp, G. Goldet, C. Brandmayr, O. Sanganas, K. A. Vincent, M. Haumann, F. A. Armstrong, and T. Happe. Proc. Natl. Acad. Sci. USA 106, 17331-17336 (2009). Electrochemical Kinetic Investigations of the Reactions of [FeFe]-hydrogenases with Carbon Monoxide and Oxygen: Comparing the Importance of Gas Tunnels and Active-Site Electronic/Redox Effects. G. Goldet, C. Brandmayr, S. Stripp, T. Happe, C. Cavazza, J. C. Fontecilla-Camps and F. A. Armstrong. J. Amer. Chem. Soc. 131, 14979-14989 (2009). Water-Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets O. Lazarus, T. W. Woolerton, A. Parkin, M.J. Lukey, E. Reisner, J. Seravalli, E. Pierce, S. W. Ragsdale, F. Sargent and F. A. Armstrong. J. Amer. Chem. Soc. 131, 14154–14155 (2009). Catalytic electrochemistry of a [NiFeSe]-Hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. E. Reisner, J.-C. Fontecilla-Camps and F. A. Armstrong. Chem.Commun. 550-552 (2009). Oxygen-tolerant H2 oxidation by membrane-bound [NiFe]-hydrogenases of Ralstonia species: Coping with low-level H2 in air. M. Ludwig, J. A. Cracknell, K. A. Vincent, F. A. Armstrong and O. Lenz. J. Biol. Chem. 284, 465-477 (2009). Dynamic Electrochemical Investigations of Hydrogen Oxidation and Production by Enzymes and Implications for Future Technology. F. A. Armstrong, N. A. Belsey, J. A. Cracknell, G. Goldet, A. Parkin, E. Reisner, K. A. Vincent and A. F.Wait. Chem. Soc. Rev. 38, 36-51 (2009).

推荐链接
down
wechat
bug