当前位置: X-MOL首页全球导师 海外导师 › Reisner, Erwin


Current positions and affiliations 2017 – present Professor of Energy & Sustainability, Department of Chemistry, University of Cambridge, UK 2011 – present Fellow of St. John's College, Cambridge, UK Previous academic appointments 2015 – 2017 University Reader, Department of Chemistry, University of Cambridge, UK 2010 – 2015 University Lecturer, Department of Chemistry, University of Cambridge, UK 2009 – 2010 EPSRC Career Acceleration Fellow, The University of Manchester, UK Previous postdoc positions 2008 – 2009 BBSRC Research Associate, Inorganic Chemistry Laboratory, University Oxford, UK Supervisor: Prof. Fraser A. Armstrong 2008 – 2009 College Lecturer in Inorganic Chemistry, St. John’s College, Oxford, UK 2005 – 2007 Erwin Schrödinger Research Fellow, Massachusetts Institute of Technology, USA Supervisor: Prof. Stephen J. Lippard Education and degrees 2010 Habilitation (professorial qualification), Faculty of Chemistry, University of Vienna, Austria Topic: ‘Bio-inspired generation of sustainable energy carriers’ 2002 – 2005 PhD with distinction (grade 1.0), Faculty of Chemistry, University of Vienna, Austria (including 1-year research at Instituto Superior Técnico, Lisbon, Portugal) Supervisor: Prof. Bernhard K. Keppler. Topic: ‘Redox activated ruthenium anticancer drugs’ 1998 – 2002 Diploma (5-year MSc programme) with distinction (grade 1.0), Faculty of Chemistry, University of Vienna, Austria (incl. Erasmus exchange, New University of Lisbon, Portugal)


Solar reforming Solar-driven fuel synthesis is a sustainable and potentially economical technology for producing energy carriers such as “green” H2 fuel through water splitting. Photocatalytic water splitting processes are usually limited by the water oxidation half-reaction, which is kinetically and energetically demanding as well as requires often expensive catalysts and unsustainable sacrificial reagents. Our research aims to overcome these challenges by using alternative oxidation half-reactions to drive the breakdown of waste polymers or chemicals into valuable organic products. We utilise a variety of novel photocatalysts – including quantum dots and carbon-based nanomaterials – to (1) develop light-driven, high-yield organic transformations and (2) “photoreform” plastic- or biomass-derived waste into organics and fuel. Our aim is to enhance the sustainability and economic value of solar fuels by developing processes that simultaneously produce fuels and drive value-added organic transformations. CO2 utilisation The sustainable utilisation of the greenhouse gas CO2 represents a key step towards accomplishing a circular carbon economy. To address this goal, we interface light absorbers with suitable catalysts for the light-driven conversion of CO2 to value-added chemicals, including CO, formate, methane, or liquid multicarbon products. Our research covers various facets of CO2 conversion, from fundamental studies on electrocatalytic surface-bound interactions, to applied research on device integration and upscaling. Molecular catalysts are immobilised onto nanostructured metal oxide, lead halide perovskite, and silicon semiconductors to promote highly-selective CO2 conversion in both aqueous and organic media. Spectroelectrochemical studies on those (photo)electrodes uncover mechanistic insights into optimal catalyst loading and selectivity. Synthetic catalysts are functionalised with a variety of anchor groups to enable photocatalysis in colloidal systems involving quantum dot, carbon nitride and carbon dot nanoparticles. Photoelectrochemical “artificial leaf” devices and particulate photocatalyst sheets are being developed to probe the stability and scalability of our systems, taking practical aspects as variable daylight conditions and day-night cycles into account. Overall, our efforts strive towards establishing solar carbon fuels as a competitive alternative to fossil fuels in the future. Semi-artificial photosynthesis Semi-artificial photosynthetic systems aim to overcome the limitations of natural and artificial photosynthesis while providing an opportunity to investigate their respective functionality. Enzymes are macromolecular biological catalysts that have been naturally selected over billions of years to perform specific reactions with high selectivity and efficiency. In particular, we are interested in interfacing photosynthetic and redox active enzymes with custom-made high surface area electrodes to study their fundamental biology and drive interesting endergonic reactions. In parallel, we examine how more complex living microorganism systems can be recruited for in vivo fuel and chemical production. Our lab employs a suite of chemical biology and biophysical methods, including advanced (photo)electrochemical techniques such as rotating ring disk electrochemistry, resonance Raman and infrared spectroscopy and quartz crystal microbalance measurements. To develop enzyme and cell-based hybrid (photo)electrochemical devices with light absorbing semiconductors such as metal oxides, perovskites and silicon we design high-surface area electrode materials, such as metal oxides, carbon nanotubes and graphene as conductive supports with high loading. We also study photocatalytic systems with semiconducting nanoparticles such as carbon dots, graphitic carbon nitride and quantum dots for hybrid solar fuel generation in suspension.


查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Electrostatic [FeFe]-hydrogenase–carbon nitride assemblies for efficient solar hydrogen production.Liu, Y.; Pulignani, C.; Webb, S.; Cobb, S. J.; Rodríguez-Jiménez, S.; Kim, D.; Milton, R. D.; Reisner, E. Chem. Sci., 2024, Accepted. Low-temperature open-atmosphere growth of WO3 thin films with tunable and high-performance photoresponse.Sun, Z.; Bhattacharjee, S.; Xiao, M.; Li, W.; O Hill, M.; Jagt, R. A.; Delumeau, L.-V.; Musselman, K. P.; Reisner, E.; MacManus-Driscoll, J. J. Mater. Chem. C, 2024, Accepted. Operando film-electrochemical EPR spectroscopy tracks radical intermediates in surface-immobilized catalysts.Seif-Eddine, M.; Cobb, S. J.; Dang, Y.; Abdiaziz, K.; Bajada, M. A.; Reisner, E.; Roessler, M. M. Nat. Chem., 2024, Accepted. Solar reforming as an emerging technology for circular chemical industries.Bhattacharjee, S.; Linley, S.; Reisner, E. Nat. Rev. Chem., 2024, Accepted. Connecting biological and synthetic approaches for electrocatalytic CO2 reduction.Cobb, S. J.; Rodríguez-Jiménez, S.; Reisner, E. Angew. Chem. Int. Ed., 2024, Accepted. Valorisation of lignocellulose and low concentration CO2 using a fractionation-photocatalysis-electrolysis process.Rodríguez-Jiménez, S.; Lam, E.; Bhattacharjee, S.; Reisner, E. Green Chem., 2023, 25, 10611-10621. Hybrid photothermal–photocatalyst sheets for solar-driven overall water splitting coupled to water purification.Pornrungroj, C.; Mohamad Annuar, A. B.; Wang, Q.; Rahaman, M.; Bhattacharjee, S.; Andrei, V.; Reisner, E. Nat. Water, 2023, 1, 952-960. Chemoenzymatic photoreforming: a sustainable approach for solar fuel generation from plastic feedstocks.Bhattacharjee, S.; Guo, C.; Lam, E.; Holstein, J. M.; Pereira, M. R.; Pichler, C. M.; Pornrungroj, C.; Rahaman, M.; Uekert, T.; Hollfelder, F.; Reisner, E. J. Am. Chem. Soc., 2023, 145, 20355-20364. Size-dependent activity of carbon dots for photocatalytic H2 generation in combination with a molecular Ni cocatalyst.Casadevall, C.; Lage, A.; Mu, M.; Greer, H. F.; Antón-García, D.; Butt, J.; Jeuken, L. J. C.; Watson, G. W.; Garcia-Melchor, M.; Reisner, E. Nanoscale, 2023, 15, 15775-15784. Best practices for experiments and reporting in photocatalytic CO2 reduction.Bonchio, M.; Bonin, J.; Ishitani, O.; Lu, T.-B.; Morikawa, T.; Morris, A. J.; Reisner, E.; Sarkar, D.; Toma, F. M.; Robert, M. Nat. Catal., 2023, 6, 657-665. Photocatalytic CO2 reduction.Fang, S.; Rahaman, M.; Bharti, J.; Reisner, E.; Robert, M.; Ozin, G. A.; Hu, Y. H. Nat. Rev. Methods Primers, 2023, 3, 61. Rational design of covalent multiheme cytochrome-carbon dot biohybrids for photoinduced electron transfer.Zhang, H.; Casadevall, C.; van Wonderen, J. H.; Su, L.; Butt, J. N.; Reisner, E.; Jeuken, L. J. C. Adv. Funct. Mater., 2023, 33, 202302204. Low-volume reaction monitoring of carbon dot light absorbers in optofluidic microreactors.Lawson, T.; Gentleman, A. S.; Lage, A.; Casadevall, C.; Xiao, J.; Petit, T.; Frosz, M. H.; Reisner, E.; Euser, T. G. ACS Catal., 2023, 13, 9090-9101. Integrated capture and solar-driven utilization of CO2 from flue gas and air.Kar, S.; Rahaman, M.; Andrei, V.; Bhattacharjee, S.; Roy, S.; Reisner, E. Joule, 2023, 7, 1496-1514. Thermoelectric–photoelectrochemical water splitting under concentrated solar irradiation.Pornrungroj, C.; Andrei, V.; Reisner, E. J. Am. Chem. Soc., 2023, 145, 13709-13714. Heterostructured PHI-PTI/Li+Cl− carbon nitrides for multiple photocatalytic applications.Galushchinskiy, A.; Pulignani, C.; Szalad, H.; Reisner, E.; Albero, J.; Tarakina, N. V.; Pelicano, C. M.; García, H.; Savateev, O.; Antonietti, M. Solar RRL, 2023, 7, 202300077. Solar-driven liquid multi-carbon fuel production using a standalone perovskite–BiVO4 artificial leaf.Rahaman, M.; Andrei, V.; Wright, D.; Lam, E.; Pornrungroj, C.; Bhattacharjee, S.; Pichler, C. M.; Greer, H. F.; Baumberg, J. J.; Reisner, E. Nat. Energy, 2023, 8, 629-638. Floating carbon nitride composites for practical solar reforming of pre-treated wastes to hydrogen gas.Linley, S.; Reisner, E. Adv. Sci., 2023, 10, 202207314. Carboxysome-inspired electrocatalysis using enzymes for the reduction of CO2 at low concentrations.Cobb, S. J.; Dharani, A. M.; Oliveira, A. R.; Pereira, I. A. C.; Reisner, E. Angew. Chem. Int. Ed., 2023, 62, e202218782. Photosynthesis re-wired on the pico-second timescale.Baikie, T. K.; Wey, L. T.; Lawrence, J. M.; Medipally, H.; Reisner, E.; Nowaczyk, M. M.; Friend, R. H.; Howe, C. J.; Schnedermann, C.; Rao, A.; Zhang, J. Z. Nature, 2023, 615, 836-840. Comproportionation of CO2 and cellulose to formate using a floating semiconductor-enzyme photoreforming catalyst.Lam, E.; Miller, M.; Linley, S.; Manuel, R. R.; Pereira, I. A. C.; Reisner, E. Angew. Chem. Int. Ed., 2023, 62, e202215894. Photoelectrochemical CO2-to-fuel conversion with simultaneous plastic reforming.Bhattacharjee, S.; Rahaman, M.; Andrei, V.; Miller, M.; Rodríguez-Jiménez, S.; Lam, E.; Pornrungroj, C.; Reisner, E. Nat. Synth., 2023, 2, 182-192. Hybrid photocathode based on Ni molecular catalyst and Sb2Se3 for solar H2 production.Osorio, D. A. G.; Shalvey, T.; Banerji, L.; Saeed, K. H.; Neri, G.; Phillips, L.; Hutter, O. S.; Casadevall, C.; Antón-García, D.; Reisner, E.; Major, J.; Cowan, A. J. Chem. Commun., 2023, 59, 944-947. In-situ detection of cobaloxime intermediates during photocatalysis using hollow-core photonic crystal fiber microreactors.Lawson, T.; Gentleman, A. S.; Pinnell, J.; Eisenschmidt, A.; Antón-García, D.; Frosz, M. H.; Reisner, E.; Euser, T. Angew. Chem. Int. Ed., 2023, 62, e202214788. Solar panel technologies for light-to-chemical conversion.Andrei, V.; Wang, Q.; Uekert, T.; Bhattacharjee, S.; Reisner, E. Acc. Chem. Res., 2022, 55, 3376-3386. Bio-electrocatalytic conversion of food waste to ethylene via succinic acid as the central intermediate.Pichler, C. M.; Bhattacharjee, S.; Lam, E.; Su, L.; Collauto, A.; Roessler, M. M.; Cobb, S. J.; Badiani, V. M.; Rahaman, M.; Reisner, E. ACS Catal., 2022, 12, 13360-13371. Rational design of carbon nitride photoelectrodes with high activity toward organic oxidations.Pulignani, C.; Mesa, C.; Hillman, S.; Uekert, T.; Gimenez, S.; Durrant, J.; Reisner, E. Angew. Chem. Int. Ed., 2022, 61, e202211587. Reaction of thiosulfate dehydrogenase with a substrate mimic induces dissociation of the cysteine heme ligand giving insights into the mechanism of oxidative catalysis.Jenner, L. P.; Crack, J. C.; Kurth, J. M.; Soldánová, Z.; Brandt, L.; Sokol, K. P.; Reisner, E.; Bradley, J. M.; Dahl, C.; Cheesman, M. R.; Butt, J. N. J. Am. Chem. Soc., 2022, 144, 18296-18304. Microbial fermentation of polyethylene terephthalate (PET) plastic waste for the production of chemicals or electricity.Kalathil, S.; Miller, M.; Reisner, E. Angew. Chem. Int. Ed., 2022, 61, e202211057. Stern–Volmer analysis of photocatalyst fluorescence quenching within hollow-core photonic crystal fibre microreactors.Gentleman, A. S.; Lawson, T.; Ellis, M. G.; Davis, M.; Turner-Dore, J.; Ryder, A. S. H.; Frosz, M. H.; Ciaccia, M.; Reisner, E.; Cresswell, A. J.; Euser, T. G. Chem. Commun., 2022, 58, 10548-10551. Floating perovskite-BiVO4 devices for scalable solar fuel production.Andrei, V.; Ucoski, G. M.; Pornrungroj, C.; Uswachoke, C.; Wang, Q.; Achilleos, D. S.; Kasap, H.; Sokol, K. P.; Jagt, R. A.; Lu, H.; Lawson, T.; Wagner, A.; Pike, S. D.; Wright, D. S.; Hoye, R. L. Z.; MacManus-Driscoll, J. L.; Joyce, H. J.; Friend, R. H.; Reisner, E. Nature, 2022, 608, 518-522. Photocatalytic removal of the greenhouse gas nitrous oxide by liposomal microreactors.Piper, S. E. H.; Casadevall, C.; Reisner, E.; Clarke, T. A.; Jeuken, L. J. C.; Gates, A. J.; Butt, J. N. Angew. Chem. Int. Ed., 2022, 61, e202210572. Engineering electro- and photocatalytic carbon materials for CO2 reduction by formate dehydrogenase.Badiani, V. M.; Casadevall, C.; Miller, M.; Cobb, S. J.; Manuel, R. R.; Pereira, I. A. C.; Reisner, E. J. Am. Chem. Soc., 2022, 144, 14207-14216. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization.Wang, Q.; Kalathil, S.; Pornrungroj, C.; Sahm, C. D.; Reisner, E. Nat. Catal., 2022, 5, 633-641. Bridging plastic recycling and organic catalysis: photocatalytic deconstruction of polystyrene via a C–H oxidation pathway.Li, T.; Vijeta, A.; Casadevall, C.; Gentleman, A. S.; Euser, T.; Reisner, E. ACS Catal., 2022, 12, 8155-8163. Long-term solar water and CO2 splitting with photoelectrochemical BiOI–BiVO4 tandems.Andrei, V.; Jagt, R. A.; Rahaman, M.; Lari, L.; Lazarov, V. K.; MacManus-Driscoll, J. L.; Hoye, R. L. Z.; Reisner, E. Nat. Mater., 2022, 21, 864-868. Self-assembled liposomes enhance electron transfer for efficient photocatalytic CO2 reduction.Rodríguez-Jiménez, S.; Song, H.; Lam, E.; Wright, D.; Pannwitz, A.; Bonke, S. A.; Baumberg, J. J.; Bonnet, S.; Hammarstrom, L.; Reisner, E. J. Am. Chem. Soc., 2022, 144, 9399–9412. Spectroelectrochemistry of water oxidation kinetics in molecular versus heterogeneous oxide iridium electrocatalysts.Bozal-Ginesta, C.; Rao, R. R.; Mesa, C. A.; Wang, Y.; Zhao, Y.; Hu, G.; Antón-García, D.; Stephens, I. E. L.; Reisner, E.; Brudvig, G. W.; Wang, D.; Durrant, J. R. J. Am. Chem. Soc., 2022, 144, 8454-8459. Single-source deposition of mixed-metal oxide films containing zirconium and 3d transition metals for (photo)electrocatalytic water oxidation.Riesgo-Gonzalez, V.; Bhattacharjee, S.; Dong, X.; Hall, D. S.; Andrei, V.; Bond, A. D.; Grey, C. P.; Reisner. E.; Wright, D. S. Inorg. Chem., 2022, 61, 6223-6233. Tuning the local chemical environment of ZnSe quantum dots with dithiols towards photocatalytic CO2 reduction.Sahm, C.; Ciotti, A.; Mates-Torres, E.; Badiani, V. M.; Sokolowski, K.; Neri, G.; Cowan, A. J.; Garcia-Melchor, M.; Reisner E. Chem. Sci., 2022, 13, 5988-5998. An integrated carbon nitride-nickel photocatalyst for the amination of aryl halides using sodium azide.Vijeta, A.; Casadevall, C.; Reisner, E. Angew. Chem. Int. Ed., 2022, 61, e202203176. Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis.Cobb, S. J.; Badiani, V. M.; Dharani, A. M.; Wagner, A.; Zacarias, S.; Oliveira, A. R.; Zacarias, S.; Pereira, I. A. C.; Reisner, E. Nat. Chem., 2022, 14, 417-424. Understanding the local chemical environment of bioelectrocatalysis.Edwardes Moore, E.; Cobb, S. J.; Coito, A. M.; Oliveira, A. R.; Pereira, I. A. C.; Reisner, E. Proc. Natl. Acad. Sci. U.S.A., 2022, 119, e2114097119. Elucidating film loss and the role of hydrogen bonding of adsorbed redox enzymes by electrochemical quartz crystal microbalance analysis.Badiani, V. M.; Cobb, S. J.; Wagner, A.; Oliveira, A. R.; Zacarias, S.; Pereira, I. A. C.; Reisner, E. ACS Catal., 2022, 12, 1886-1897. Photoelectrochemical hybrid cell for unbiased CO2 reduction coupled to alcohol oxidation.Antón García, D.; Edwardes Moore, E.; Bajada, M. A.; Eisenschmidt, A.; Oliveira, A. R.; Pereira, I. A. C.; Warnan, J.; Reisner, E. Nat. Synth., 2022, 1, 77-86. Strategies to improve light utilization in solar fuel synthesis.Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Nat. Energy, 2022, 7, 13-24. Reforming of soluble biomass and plastic derived waste using a bias-free Cu30Pd70|perovskite|Pt photoelectrochemical device.Bhattacharjee, S.; Andrei, V.; Pornrungroj, C.; Rahaman, M.; Pichler, C. M.; Reisner, E. Adv. Funct. Mater., 2022, 32, 2109313.