我们实验室建立了综合性研究体系,致力于推动从多样化天然资源中高效提取生物活性成分的技术创新。该研究系统探索了传统与新型绿色提取方法,旨在优化高价值天然产物的得率、纯度及功能特性。研究涵盖从水果、药用植物、农业副产物和真菌中提取多酚、多糖及其他植物化学物质,重点关注可持续性及在食品与营养保健品产业的应用。
1. 绿色高效提取技术的进展
本研究核心是开发环境友好型提取技术,其效率与环境安全性均优于传统方法。
1.1 基于低共熔溶剂的提取(Deep Eutectic Solvent, DES)
本实验室率先将低共熔溶剂(DES)确立为绿色高效的生物活性成分提取介质。我们成功应用DES辅助提取(DAE)技术,并常结合微波(MDE)或超声(UADE)强化其效能。例如:MDE被证实是从疏果未熟猕猴桃中提取果胶多糖的高效方法,其产物抗氧化性与免疫调节活性显著优于热水提取物(Wu et al., 2024);UADE则使同源猕猴桃副产物的酚类化合物得率大幅提升,提取物展现卓越的抗氧化与抗炎活性(Wu et al., 2023)。研究还表明DES能选择性提取荷叶酸性多糖,并显著提升甜茶和椰枣籽多糖的提取效率,持续获得高生物活性产物(Wu et al., 2021; Wu et al., 2022; Subhash et al., 2024)。
1.2 超声与微波辅助提取
我们深度优化了超声辅助提取(Ultrasound-Assisted Extraction, UAE)和微波辅助提取(Microwave-Assisted Extraction, MAE)技术以提升活性成分回收率。UAE通过破坏细胞结构显著提高菜豆抗氧化物的提取效率(Yang et al., 2019),并运用响应面法(Response Surface Methodology, RSM)优化了红刀豆种皮、绿豆种皮及'金丰'猕猴桃多酚的提取工艺(Zhou et al., 2019; Zhou et al., 2017; Mai et al., 2022)。值得注意的是,UAE实现了石榴皮中强效α-葡萄糖苷酶抑制剂——安石榴苷(punicalagin)的高效提取(Liu et al., 2022)。MAE技术亦被优化应用于甜茶、八月瓜(Akebia trifoliata)果皮及五花茶的抗氧化物提取,证实其为快速高效的技术方案(Shang et al., 2020; Luo et al., 2021; Zhao et al., 2018)。
2. 提取技术比较与构效关系研究
本研究通过系统比较不同提取方法,揭示其对产物理化特性与生物功能的调控机制。枇杷叶、甜茶、蒲公英及竹荪(Dictyophora indusiata)多糖的研究表明:提取技术选择(热水提取/加压水提取(PWE)/UAE/MAE/DES)显著影响多糖得率、分子量、糖醛酸含量及最终生物活性(Fu et al., 2020; Guo et al., 2021; Wu et al., 2022; Wu et al., 2021)。例如:PWE是从青稞(Qingke barley)中获取高分子量、强降血脂活性多糖及从蒲公英中提取高生物活性多糖的优选方法;而UAE常获得低分子量但具强益生元效应的多糖(He et al., 2020; Wu et al., 2022; Fu et al., 2020)。这些比较研究为定向获取特定功能天然产物提供了科学依据。
3. 特定生物活性成分的提取研究
我们针对高价值化合物类别开展定向提取、纯化与表征研究。
3.1 多酚与黄酮类化合物
开发了多种天然产物多酚提取新方法:创新性结合UAE与DES的绿色提取技术有效破坏茶叶细胞结构,显著提升绿茶多酚得率与抗氧化活性(Luo et al., 2020)。发表权威综述系统总结茶多酚及多甲氧基黄酮(Polymethoxyflavones, PMFs)的提取、纯化与鉴定技术(Li et al., 2023; Gan et al., 2024)。此外,优化了桑葚花色苷(anthocyanins)提取工艺(Zou et al., 2011),并采用绿色提取技术解析黑茶茶褐素(theabrownins)的复杂化学组成(Liu et al., 2022)。
3.2 多糖及其他生物活性物
研究涵盖甜茶多糖等功能植物广谱来源:优化PWE工艺实现甜茶多糖高产率与肠道菌群调节功能(Lei et al., 2022)。发表茯苓(Poria cocos)多糖及药用大麻(Cannabis sativa)活性成分的提取与生物活性前沿综述,重点评述超临界流体与DES相关精细化提取技术(Ng et al., 2024; Liu et al., 2022)。研究还延伸至大豆亲脂蛋白(soybean lipophilic protein)提取及油樟树(Cinnamomum camphora)植物精油萃取,并实现提取液中多酚同步回收(Zhong et al., 2024; Shang et al., 2020)。
4. 研究意义与创新性
我们实验室的系列研究成果对学术界和工业界都具有重要价值。我们工作的创新性在于开创性地应用并系统优化了绿色提取技术,特别是基于DES的方法,并常与超声或微波技术相结合。我们成功证明,这些方法不仅更具可持续性,而且能够产出具有更优生物活性的提取物。
我们研究工作的一项关键重要贡献是对农业和食品加工副产物(如疏除的猕猴桃、水果皮和种皮)的增值利用,将它们从废弃物转化为高价值功能性成分的来源。我们严谨的比较研究为揭示构效关系提供了关键见解,从而指导针对功能性食品、营养保健品和药物等特定应用领域定制化生产活性天然产物。通过发表关于茶叶多酚和大麻生物活性物等关键主题的综合性、前沿性综述,我们实验室也成为了该领域的重要声音,整合了知识并为未来的研究指明了方向。总之,我们的工作弥合了基础提取科学与促进人类营养健康的实用、可持续应用之间的鸿沟。
致谢
谨此感谢所有参与本项研究的团队成员与合作者的卓越贡献。
成果发表列表
Fu, Y., Li, F., Ding, Y., Li, H. Y., Xiang, X. R., Ye, Q., Zhang, J., Zhao, L., Qin, W., Gan, R. Y., & Wu, D. T. (2020). Polysaccharides from loquat (Eriobotrya japonica) leaves: Impacts of extraction methods on their physicochemical characteristics and biological activities. International Journal of Biological Macromolecules, 146, 508–517. http://dx.doi.org/10.1016/j.ijbiomac.2019.12.273
Gan, R. Y., Liu, Y., Li, H., Xia, Y., Guo, H., Geng, F., Zhuang, Q. G., Li, H. B., & Wu, D. T. (2024). Natural sources, refined extraction, biosynthesis, metabolism, and bioactivities of dietary polymethoxyflavones (PMFs). Food Science and Human Wellness, 13(1), 27–49. http://dx.doi.org/10.26599/FSHW.2022.9250003
Guo, H., Fu, M. X., Zhao, Y. X., Li, H., Li, H. B., Wu, D. T., & Gan, R. Y. (2021). The Chemical, Structural, and Biological Properties of Crude Polysaccharides from Sweet Tea (Lithocarpus litseifolius (Hance) Chun) Based on Different Extraction Technologies. Foods, 10(8), Article 1779. http://dx.doi.org/10.3390/foods10081779
He, J. L., Guo, H., Wei, S. Y., Zhou, J., Xiang, P. Y., Liu, L., Zhao, L., Qin, W., Gan, R. Y., & Wu, D. T. (2020). Effects of different extraction methods on the structural properties and bioactivities of polysaccharides extracted from Qingke (Tibetan hulless barley). Journal of Cereal Science, 92, Article 102906. http://dx.doi.org/10.1016/j.jcs.2020.102906
Lei, J., Li, W., Fu, M. X., Wang, A. Q., Wu, D. T., Guo, H., Hu, Y. C., Gan, R. Y., Zou, L., & Liu, Y. (2022). Pressurized hot water extraction, structural properties, biological effects, and in vitro microbial fermentation characteristics of sweet tea polysaccharide. International Journal of Biological Macromolecules, 222, 3215–3228. http://dx.doi.org/10.1016/j.ijbiomac.2022.10.094
Li, H., Guo, H., Luo, Q., Wu, D. T., Zou, L., Liu, Y., Li, H. B., & Gan, R. Y. (2023). Current extraction, purification, and identification techniques of tea polyphenols: An updated review. Critical Reviews in Food Science and Nutrition, 63(19), 3912–3930. http://dx.doi.org/10.1080/10408398.2021.1995843
Liu, Y., Kong, K. W., Wu, D. T., Liu, H. Y., Li, H. B., Zhang, J. R., & Gan, R. Y. (2022). Pomegranate peel-derived punicalagin: Ultrasonic-assisted extraction, purification, and its α-glucosidase inhibitory mechanism. Food Chemistry, 374, Article 131635. http://dx.doi.org/10.1016/j.foodchem.2021.131635
Liu, Y., Liu, H. Y., Li, S. H., Ma, W., Wu, D. T., Li, H. B., Xiao, A. P., Liu, L. L., Zhu, F., & Gan, R. Y. (2022). Cannabis sativa bioactive compounds and their extraction, separation, purification, and identification technologies: An updated review. TRAC-Trends in Analytical Chemistry, 149, Article 116554. http://dx.doi.org/10.1016/j.trac.2022.116554
Liu, Y., Liu, H. Y., Xia, Y., Guo, H., He, X. Q., Li, H., Wu, D. T., Geng, F., Lin, F. J., Li, H. B., Zhuang, Q. G., & Gan, R. Y. (2021). Screening and process optimization of ultrasound-assisted extraction of main antioxidants from sweet tea (Lithocarpus litseifolius [Hance] Chun). Food Bioscience, 43, Article 101277. http://dx.doi.org/10.1016/j.fbio.2021.101277
Liu, Y., Liu, H. Y., Yang, X., Zhu, F., Wu, D. T., Li, H. B., & Gan, R. Y. (2022). Green extraction, chemical composition, and in vitro antioxidant activity of theabrownins from Kangzhuan dark tea. Current Research in Food Science, 5, 1944–1954. http://dx.doi.org/10.1016/j.crfs.2022.10.019
Luo, M., Zhou, D. D., Shang, A., Gan, R. Y., & Li, H. B. (2021). Influences of Microwave-Assisted Extraction Parameters on Antioxidant Activity of the Extract from Akebia trifoliata Peels. Foods, 10(6), Article 1432. http://dx.doi.org/10.3390/foods10061432
Luo, Q., Zhang, J. R., Li, H. B., Wu, D. T., Geng, F., Corke, H., Wei, X. L., & Gan, R. Y. (2020). Green Extraction of Antioxidant Polyphenols from Green Tea (Camellia sinensis). Antioxidants, 9(9), Article 785. http://dx.doi.org/10.3390/antiox9090785
Mai, Y. H., Zhuang, Q. G., Li, Q. H., Du, K., Wu, D. T., Li, H. B., Xia, Y., Zhu, F., & Gan, R. Y. (2022). Ultrasound-Assisted Extraction, Identification, and Quantification of Antioxidants from 'Jinfeng' Kiwifruit. Foods, 11(6), Article 827. http://dx.doi.org/10.3390/foods11060827
Ng, C. Y. J., Lai, N. P. Y., Ng, W. M., Siah, K. T. H., Zhong, L. L. D., & Gan, R. Y. (2024). Chemical structures, extraction and analysis technologies, and bioactivities of edible fungal polysaccharides from Poria cocos: An updated review. International Journal of Biological Macromolecules, 261, Article 129555. http://dx.doi.org/10.1016/j.ijbiomac.2024.129555
Shang, A., Gan, R. Y., Zhang, J. R., Xu, X. Y., Luo, M., Liu, H. Y., & Li, H. B. (2020). Optimization and Characterization of Microwave-Assisted Hydro-Distillation Extraction of Essential Oils from Cinnamomum camphora Leaf and Recovery of Polyphenols from Extract Fluid. Molecules, 25(14), Article 3213. http://dx.doi.org/10.3390/molecules25143213
Shang, A., Luo, M., Gan, R. Y., Xu, X. Y., Xia, Y., Guo, H., Liu, Y., & Li, H. B. (2020). Effects of Microwave-Assisted Extraction Conditions on Antioxidant Capacity of Sweet Tea (Lithocarpus polystachyus Rehd.). Antioxidants, 9(8), Article 678. http://dx.doi.org/10.3390/antiox9080678
Subhash, A. J., Bamigbade, G. B., al-Ramadi, B., Kamal-Eldin, A., Gan, R. Y., Ranadheera, C. S., & Ayyash, M. (2024). Characterizing date seed polysaccharides: A comprehensive study on extraction, biological activities, prebiotic potential, gut microbiota modulation, and rheology using microwave-assisted deep eutectic solvent. Food Chemistry, 444, Article 138618. http://dx.doi.org/10.1016/j.foodchem.2024.138618
Wu, D. T., Deng, W., Li, J., Geng, J. L., Hu, Y. C., Zou, L., Liu, Y., Liu, H. Y., & Gan, R. Y. (2023). Ultrasound-Assisted Deep Eutectic Solvent Extraction of Phenolic Compounds from Thinned Young Kiwifruits and Their Beneficial Effects. Antioxidants, 12(7), Article 1475. http://dx.doi.org/10.3390/antiox12071475
Wu, D. T., Feng, K. L., Huang, L., Gan, R. Y., Hu, Y. C., & Zou, L. (2021). Deep Eutectic Solvent-Assisted Extraction, Partially Structural Characterization, and Bioactivities of Acidic Polysaccharides from Lotus Leaves. Foods, 10(10), Article 2330. http://dx.doi.org/10.3390/foods10102330
Wu, D. T., Fu, M. X., Guo, H., Hu, Y. C., Zheng, X. Q., Gan, R. Y., & Zou, L. (2022). Microwave-Assisted Deep Eutectic Solvent Extraction, Structural Characteristics, and Biological Functions of Polysaccharides from Sweet Tea (Lithocarpus litseifolius) Leaves. Antioxidants, 11(8), Article 1578. http://dx.doi.org/10.3390/antiox11081578
Wu, D. T., Geng, J. L., Li, J., Deng, W., Zhang, Y., Hu, Y. C., Zou, L., Xia, Y., Zhuang, Q. G., Liu, H. Y., & Gan, R. Y. (2024). Efficient extraction of pectic polysaccharides from thinned unripe kiwifruits by deep eutectic solvent-based methods: Chemical structures and bioactivities. Food Chemistry-X, 21, Article 101083. http://dx.doi.org/10.1016/j.fochx.2023.101083
Wu, D. T., Li, F., Feng, K. L., Hu, Y. C., Gan, R. Y., & Zou, L. (2022). A comparison on the physicochemical characteristics and biological functions of polysaccharides extracted from Taraxacum mongolicum by different extraction technologies. Journal of Food Measurement and Characterization, 16(4), 3182–3195. http://dx.doi.org/10.1007/s11694-022-01439-6
Wu, D. T., Zhao, Y. X., Guo, H., Gan, R. Y., Peng, L. X., Zhao, G., & Zou, L. (2021). Physicochemical and Biological Properties of Polysaccharides from Dictyophora indusiata Prepared by Different Extraction Techniques. Polymers, 13(14), Article 2357. http://dx.doi.org/10.3390/polym13142357
Yang, Q. Q., Gan, R. Y., Ge, Y. Y., Zhang, D., & Corke, H. (2019). Ultrasonic Treatment Increases Extraction Rate of Common Bean (Phaseolus vulgaris L.) Antioxidants. Antioxidants, 8(4), Article 83. http://dx.doi.org/10.3390/antiox8040083
Zhao, C. N., Tang, G. Y., Liu, Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Zhang, K. Y., Meng, S. L., & Li, H. B. (2018). Five-Golden-Flowers Tea: Green Extraction and Hepatoprotective Effect against Oxidative Damage. Molecules, 23(9), Article 2216. http://dx.doi.org/10.3390/molecules23092216
Zhong, M. M., Sun, Y. F., Qayum, A., Liang, Q. F., Rehman, A., Gan, R. Y., Ma, H. L., & Ren, X. F. (2024). Research progress in soybean lipophilic protein (LP): Extraction, structural, techno-functional properties, and high-performance food applications. Trends in Food Science & Technology, 147, Article 104440. http://dx.doi.org/10.1016/j.tifs.2024.104440
Zhou, Y., Xu, X. Y., Gan, R. Y., Zheng, J., Li, Y., Zhang, J. J., Xu, D. P., & Li, H. B. (2019). Optimization of Ultrasound-Assisted Extraction of Antioxidant Polyphenols from the Seed Coats of Red Sword Bean (Canavalia gladiate (Jacq.) DC.). Antioxidants, 8(7), Article 200. http://dx.doi.org/10.3390/antiox8070200
Zhou, Y., Zheng, J., Gan, R. Y., Zhou, T., Xu, D. P., & Li, H. B. (2017). Optimization of Ultrasound-Assisted Extraction of Antioxidants from the Mung Bean Coat. Molecules, 22(4), Article 638. http://dx.doi.org/10.3390/molecules22040638
Zou, T. B., Wang, M., Gan, R. Y., & Ling, W. H. (2011). Optimization of Ultrasound-Assisted Extraction of Anthocyanins from Mulberry, Using Response Surface Methodology. International Journal of Molecular Sciences, 12(5), 3006–3017. http://dx.doi.org/10.3390/ijms12053006