我们实验室在茶叶及其生物活性成分领域的研究工作总结

我们实验室在茶叶(Camellia sinensis)领域开展了广泛而深入的研究工作,系统性地探索了从茶叶到健康效应的全过程。我们的工作涵盖了提取与先进加工技术的开发、茶叶生物活性成分的深度表征,以及对其健康益处和潜在分子机制的严谨探究,尤其关注其在代谢性疾病、肠道健康和新型治疗应用中的作用。
1. 茶叶提取、加工及表征领域的进展
我们研究的一个重要部分是优化和创新茶叶的提取与加工工艺,以提升其品质和生物活性潜力。我们率先应用了绿色提取技术,例如将超声波辅助提取(Ultrasound-assisted extraction, UAE)与低共熔溶剂(deep eutectic solvents, DES)相结合,显著提高了绿茶中抗氧化多酚(Luo et al., 2020)和黑茶中茶褐素(theabrownins)(Liu et al., 2022)的提取率。在深化对提取工艺的理解上,我们证明了尽管单宁酶(tannase)和超声波等处理能增强绿茶提取物的体外抗氧化活性,但这些益处未必能转化为体内效果的提升,这凸显了对加工技术进行体内验证的重要性(Xu, Meng, et al., 2019; Xu, Zheng, et al., 2019)。以上工作结合我们一篇关于茶叶多酚提取、纯化和鉴定等传统与新型技术的综合性综述,为该领域的发展提供了重要的理论依据(Li, Guo, et al., 2023)。
此外,我们还研究了茶叶加工过程中的生物化学转化。利用多组学方法,我们详细解析了不同茶叶品种在萎凋(withering)过程中代谢物和蛋白质的动态变化,为茶叶品质的形成提供了分子层面的依据(Ye et al., 2024)。我们还探索了微生物发酵的应用,证明了通过接种黑曲霉(Aspergillus niger)发酵黑茶,可以加速发酵进程并通过调控关键化合物来改善其风味(Li et al., 2025)。我们的研究也拓展到茶叶副产物的新型应用,发现利用茶渣发酵康普茶(kombucha)能显著提高其多酚含量和抗氧化活性(Zhou, Saimaiti, et al., 2022)。
2. 茶叶生物活性成分的表征及其健康益处
我们实验室对茶叶中的关键生物活性成分及其健康促进效应进行了广泛而深入的研究。这包括多项比较性研究,例如系统性地评估了30种不同中国茶汤(Zhao et al., 2019)及其脂溶性、水溶性和结合不溶性组分(Tang et al., 2019)的酚类物质谱和抗氧化能力。我们还发现,来自12种不同中国茶的粗多糖,特别是普洱茶多糖,表现出显著的抗氧化和抗糖尿病活性,并且这些活性与其蛋白质和酚类含量呈正相关(Guo et al., 2021)。我们还发表了多篇高水平综述,系统阐述了茶叶主要成分的化学及健康益处,如L-茶氨酸(L-theanine)(Li, Liu, et al., 2022)、黑茶色素及生物活性物(Lin et al., 2021; Wang et al., 2022)以及表没食子儿茶素没食子酸酯(EGCG)(Gan et al., 2018)。
我们研究的一个主要焦点是阐明茶叶对代谢性疾病益处的分子机制。通过体内研究,我们证明了多种绿茶能够预防肥胖和非酒精性脂肪肝(non-alcoholic fatty liver disease, NAFLD)(Zhou, Mao, et al., 2022; Mao et al., 2021)。我们特别发现,黑茶中的茶褐素(TB)对NAFLD和肥胖具有强大的预防和治疗效果,并将其作用机制与通过肠-肝轴(gut-liver axis)调节血清素(serotonin)相关信号通路联系起来(Li et al., 2023)。在针对酒精性脂肪肝(alcoholic fatty liver disease, AFLD)的比较研究中,我们发现炒青绿茶(Fried Green Tea)和普洱黑茶等通过减轻氧化损伤(Li, Mao, Gan, et al., 2021)提供了显著保护,并且多种绿茶也表现出优异效果,其益处与其没食子酸和儿茶素(catechins)的含量相关(Li, Mao, Zhou, et al., 2021)。另外,一项对32种中国茶的广泛比较进一步证实,与体外研究结果相反,黑茶在酒精诱导的肝损伤模型中表现出最强的体内抗氧化和保肝活性(Cao et al., 2020)。我们发表的大量综合性综述为这些丰富的实验工作提供了理论支持,这些综述系统地总结了茶叶在调控肥胖(Xu et al., 2023)、糖尿病(Meng et al., 2019)、心血管疾病(Cao et al., 2019)、癌症(Xu et al., 2020)、神经退行性疾病(Luo et al., 2023)和高尿酸血症(Chen et al., 2023)方面的流行病学、实验和临床证据,并详细阐述了其潜在的分子机制(Shang et al., 2021; Tang et al., 2019)。
3. 生物利用度、肠道菌群互作及新型递送系统
我们认识到功效取决于生物利用度,因此我们的工作深入探讨了茶叶成分的代谢途径。我们综述了肠道菌群如何将绿茶儿茶素(green tea catechins, GTCs)代谢为生物利用度更高、活性更强的低分子量代谢物,如苯基-γ-戊内酯(phenyl-gamma-valerolactones),并指出这是实现其健康益处的关键步骤(Liu et al., 2024)。我们的实验工作表明,乌龙茶多糖能被肠道菌群有效发酵,促进了拟杆菌属(Bacteroides)等有益菌的增殖和短链脂肪酸(short-chain fatty acids)的产生(Wu et al., 2022);同时,乌龙茶和黑茶对酒精性脂肪肝的保护作用也与其恢复肠道菌群平衡的能力密切相关(Li, Mao, Zhou, et al., 2021)。
为了直接克服茶叶成分生物利用度差的问题,我们设计了新型递送系统。在一项突破性研究中,我们开发了负载EGCG的丝素蛋白微针(silk fibroin microneedles)。该系统能有效缓解阿特拉津(atrazine)诱导的大鼠睾丸毒性,其机制在于减轻氧化应激并调节关键的细胞凋亡(apoptosis)和坏死性凋亡(necroptosis)通路(Fang et al., 2024)。这项工作,连同我们关于EGCG纳米化学预防(nanochemoprevention)策略的综述(Yang et al., 2020),使我们实验室在应用纳米技术提升茶叶生物活性物治疗潜力方面走在了前沿。
4. 我们工作的意义与创新性
我们研究工作的意义在于其全面的“从茶园到功能(farm-to-function)”的系统研究方法,通过严谨的分子机制探究,将茶叶加工与其最终的健康益处联系起来。我们研究的创新性体现在以下几个关键方面:
(1)技术创新:我们率先应用并优化了用于茶叶的绿色提取技术(UAE-DES),并利用微生物接种(黑曲霉)作为一种可控方法来提升发酵茶的品质。
(2)机制驱动的健康研究:我们不只是报道生物活性,而是深入探究其分子机制。我们发现血清素-肠-肝轴是茶褐素治疗NAFLD的靶点,这正是我们进行深度、假说驱动型研究的典范。
(3) 连接生物利用度与功效:我们关注肠道菌群在茶叶成分代谢中的作用,并开发新型递送系统(如负载EGCG的微针),直接应对了茶叶活性成分生物利用度低这一关键挑战,将茶叶活性成分的潜力转化为可行的治疗策略。
(4)全面且深入的比较分析:通过系统性地比较多种茶叶的化学特征及其对特定疾病的体内效应,并发表了多篇高水平综述,我们的研究为消费者和功能性食品的开发提供了宝贵的、有据可循的指导。
总而言之,我们实验室建立了茶叶从茶园到人体的的系统研究体系,不仅分析了茶叶丰富的化学成分和健康益处,还积极设计解决方案以提升其品质、生物利用度和治疗应用。这项工作为开发源自茶叶的新型功能性食品、营养保健品和临床疗法提供了坚实的科学基础。
致谢
我们衷心感谢所有参与此项工作的团队成员和合作者的辛勤付出与通力合作,特别感谢中山大学(Sun Yat-Sen University)李华斌(Hua-Bin Li)教授及其团队的巨大贡献。
我们的发表论文列表
Cao, S. Y., Li, B. Y., Gan, R. Y., Mao, Q. Q., Wang, Y. F., Shang, A., Meng, J. M., Xu, X. Y., Wei, X. L., & Li, H. B. (2020). The In Vivo Antioxidant and Hepatoprotective Actions of Selected Chinese Teas. Foods, 9(3), 262. http://dx.doi.org/10.3390/foods9030262
Cao, S. Y., Zhao, C. N., Gan, R. Y., Xu, X. Y., Wei, X. L., Corke, H., Atanasov, A. G., & Li, H. B. (2019). Effects and Mechanisms of Tea and Its Bioactive Compounds for the Prevention and Treatment of Cardiovascular Diseases: An Updated Review. Antioxidants, 8(6), 166. http://dx.doi.org/10.3390/antiox8060166
Chen, Y., Luo, L. Y., Hu, S. S., Gan, R. Y., & Zeng, L. (2023). The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Critical Reviews in Food Science and Nutrition, 63(24), 7065-7090. http://dx.doi.org/10.1080/10408398.2022.2040417
Fang, C. Y., Li, Y. C., He, G. Y., Gan, R. Y., Luo, F., Lei, L. J., Hou, X., & Ye, Y. L. (2024). Silk fibroin microneedles loaded with epigallocatechin gallate mitigate atrazine-induced testicular toxicity. Journal of Hazardous Materials, 480, 136252. http://dx.doi.org/10.1016/j.jhazmat.2024.136252
Gan, R. Y., Li, H. B., Sui, Z. Q., & Corke, H. (2018). Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Critical Reviews in Food Science and Nutrition, 58(6), 924-941. http://dx.doi.org/10.1080/10408398.2016.1231168
Guo, H., Fu, M. X., Wu, D. T., Zhao, Y. X., Li, H., Li, H. B., & Gan, R. Y. (2021). Structural Characteristics of Crude Polysaccharides from 12 Selected Chinese Teas, and Their Antioxidant and Anti-Diabetic Activities. Antioxidants, 10(10), 1562. http://dx.doi.org/10.3390/antiox10101562
Li, B. Y., Mao, Q. Q., Gan, R. Y., Cao, S. Y., Xu, X. Y., Luo, M., Li, H. Y., & Li, H. B. (2021). Protective effects of tea extracts against alcoholic fatty liver disease in mice via modulating cytochrome P450 2E1 expression and ameliorating oxidative damage. Food Science & Nutrition, 9(10), 5626-5640. http://dx.doi.org/10.1002/fsn3.2526
Li, B. Y., Mao, Q. Q., Zhou, D. D., Luo, M., Gan, R. Y., Li, H. Y., Huang, S. Y., Saimaiti, A., Shang, A., & Li, H. B. (2021). Effects of Tea against Alcoholic Fatty Liver Disease by Modulating Gut Microbiota in Chronic Alcohol-Exposed Mice. Foods, 10(6), 1232. http://dx.doi.org/10.3390/foods10061232
Li, H., Guo, H., Luo, Q., Wu, D. T., Zou, L., Liu, Y., Li, H. B., & Gan, R. Y. (2023). Current extraction, purification, and identification techniques of tea polyphenols: An updated review. Critical Reviews in Food Science and Nutrition, 63(19), 3912-3930. http://dx.doi.org/10.1080/10408398.2021.1995843
Li, H. Y., Huang, S. Y., Zhou, D. D., Xiong, R. G., Luo, M., Saimaiti, A., Han, M. K., Gan, R. Y., Zhu, H. L., & Li, H. B. (2023). Theabrownin inhibits obesity and non-alcoholic fatty liver disease in mice via serotonin-related signaling pathways and gut-liver axis. Journal of Advanced Research, 52, 59-72. http://dx.doi.org/10.1016/j.jare.2023.01.008
Li, M. Y., Du, S. C., Xiao, Y., Wu, Y. P., Zhong, K., Huang, Y. N., Gan, R. Y., & Gao, H. (2025). Enhancing the quality of dark tea through fermentation with Aspergillus niger: Unveiling aroma and taste characteristics. Food Microbiology, 128, 104721. http://dx.doi.org/10.1016/j.fm.2025.104721
Li, M. Y., Liu, H. Y., Wu, D. T., Kenaan, A., Geng, F., Li, H. B., Gunaratne, A., Li, H., & Gan, R. Y. (2022). L-Theanine: A Unique Functional Amino Acid in Tea (Camellia sinensis L.) With Multiple Health Benefits and Food Applications. Frontiers in Nutrition, 9, 853846. http://dx.doi.org/10.3389/fnut.2022.853846
Lin, F. J., Wei, X. L., Liu, H. Y., Li, H., Xia, Y., Wu, D. T., Zhang, P. Z., Gandhi, G. R., Li, H. B., & Gan, R. Y. (2021). State-of-the-art review of dark tea: From chemistry to health benefits. Trends in Food Science & Technology, 109, 126-138. http://dx.doi.org/10.1016/j.tifs.2021.01.030
Liu, C., Gan, R. Y., Chen, D. W., Zheng, L., Ng, S. B., & Rietjens, I. M. (2024). Gut microbiota-mediated metabolism of green tea catechins and the biological consequences: An updated review. Critical Reviews in Food Science and Nutrition, 64(20), 7067-7084. http://dx.doi.org/10.1080/10408398.2023.2180478
Liu, Y., Liu, H. Y., Yang, X., Zhu, F., Wu, D. T., Li, H. B., & Gan, R. Y. (2022). Green extraction, chemical composition, and in vitro antioxidant activity of theabrownins from Kangzhuan dark tea. Current Research in Food Science, 5, 1944-1954. http://dx.doi.org/10.1016/j.crfs.2022.10.019
Luo, M., Gan, R. Y., Li, B. Y., Mao, Q. Q., Shang, A. O., Xu, X. Y., Li, H. Y., & Li, H. B. (2023). Effects and Mechanisms of Tea on Parkinson's Disease, Alzheimer's Disease and Depression. Food Reviews International, 39(1), 278-306. http://dx.doi.org/10.1080/87559129.2021.1904413
Luo, Q., Zhang, J. R., Li, H. B., Wu, D. T., Geng, F., Corke, H., Wei, X. L., & Gan, R. Y. (2020). Green Extraction of Antioxidant Polyphenols from Green Tea (Camellia sinensis). Antioxidants, 9(9), 785. http://dx.doi.org/10.3390/antiox9090785
Mao, Q. Q., Li, B. Y., Meng, J. M., Gan, R. Y., Xu, X. Y., Gu, Y. Y., Wang, X. H., & Li, H. B. (2021). Effects of several tea extracts on nonalcoholic fatty liver disease in mice fed with a high-fat diet. Food Science & Nutrition, 9(6), 2954-2967. http://dx.doi.org/10.1002/fsn3.2255
Meng, J. M., Cao, S. Y., Wei, X. L., Gan, R. Y., Wang, Y. F., Cai, S. X., Xu, X. Y., Zhang, P. Z., & Li, H. B. (2019). Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants, 8(6), 170. http://dx.doi.org/10.3390/antiox8060170
Shang, A., Li, J. H., Zhou, D. D., Gan, R. Y., & Li, H. B. (2021). Molecular mechanisms underlying health benefits of tea compounds. Free Radical Biology and Medicine, 172, 181-200. http://dx.doi.org/10.1016/j.freeradbiomed.2021.06.006
Tang, G. Y., Meng, X., Gan, R. Y., Zhao, C. N., Liu, Q., Feng, Y. B., Li, S., Wei, X. L., Atanasov, A. G., Corke, H., & Li, H. B. (2019). Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. International Journal of Molecular Sciences, 20(24), 6196. http://dx.doi.org/10.3390/ijms20246196
Tang, G. Y., Zhao, C. N., Xu, X. Y., Gan, R. Y., Cao, S. Y., Liu, Q., Shang, A., Mao, Q. Q., & Li, H. B. (2019). Phytochemical Composition and Antioxidant Capacity of 30 Chinese Teas. Antioxidants, 8(6), 180. http://dx.doi.org/10.3390/antiox8060180
Wang, S. A., Qiu, Y., Gan, R. Y., & Zhu, F. (2022). Chemical constituents and biological properties of Pu-erh tea. Food Research International, 154, 110899. http://dx.doi.org/10.1016/j.foodres.2021.110899
Wu, D. T., Liu, W., Yuan, Q., Gan, R. Y., Hu, Y. C., Wang, S. P., & Zou, L. (2022). Dynamic variations in physicochemical characteristics of oolong tea polysaccharides during simulated digestion and fecal fermentation in vitro. Food Chemistry-X, 14, 100288. http://dx.doi.org/10.1016/j.fochx.2022.100288
Xu, X. Y., Meng, J. M., Mao, Q. Q., Shang, A., Li, B. Y., Zhao, C. N., Tang, G. Y., Cao, S. Y., Wei, X. L., Gan, R. Y., Corke, H., & Li, H. B. (2019). Effects of Tannase and Ultrasound Treatment on the Bioactive Compounds and Antioxidant Activity of Green Tea Extract. Antioxidants, 8(9), 362. http://dx.doi.org/10.3390/antiox8090362
Xu, X. Y., Zheng, J., Meng, J. M., Gan, R. Y., Mao, Q. Q., Shang, A., Li, B. Y., Wei, X. L., & Li, H. B. (2019). Effects of Food Processing on In Vivo Antioxidant and Hepatoprotective Properties of Green Tea Extracts. Antioxidants, 8(12), 572. http://dx.doi.org/10.3390/antiox8120572
Xu, X. Y., Zhao, C. N., Cao, S. Y., Tang, G. Y., Gan, R. Y., & Li, H. B. (2020). Effects and mechanisms of tea for the prevention and management of cancers: An updated review. Critical Reviews in Food Science and Nutrition, 60(10), 1693-1705. http://dx.doi.org/10.1080/10408398.2019.1588223
Xu, X. Y., Zhao, C. N., Li, B. Y., Tang, G. Y., Shang, A., Gan, R. Y., Feng, Y. B., & Li, H. B. (2023). Effects and mechanisms of tea on obesity. Critical Reviews in Food Science and Nutrition, 63(19), 3716-3733. http://dx.doi.org/10.1080/10408398.2021.1992748
Yang, Q. Q., Wei, X. L., Fang, Y. P., Gan, R. Y., Wang, M., Ge, Y. Y., Zhang, D., Cheng, L. Z., & Corke, H. (2020). Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery. Critical Reviews in Food Science and Nutrition, 60(8), 1243-1264. http://dx.doi.org/10.1080/10408398.2019.1565490
Ye, Y. L., Gong, Y. Y., Huang, P., Luo, F., Gan, R. Y., & Fang, C. Y. (2024). Dynamic changes in the non-volatile and flavour compounds in withered tea leaves of three different colour cultivars based on multi-omics. Food Chemistry, 449, 139281. http://dx.doi.org/10.1016/j.foodchem.2024.139281
Zhao, C. N., Tang, G. Y., Cao, S. Y., Xu, X. Y., Gan, R. Y., Liu, Q., Mao, Q. Q., Shang, A., & Li, H. B. (2019). Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants, 8(7), 215. http://dx.doi.org/10.3390/antiox8070215
Zhou, D. D., Mao, Q. Q., Li, B. Y., Saimaiti, A., Huang, S. Y., Xiong, R. G., Shang, A., Luo, M., Li, H. Y., Gan, R. Y., Li, H. B., & Li, S. (2022). Effects of Different Green Teas on Obesity and Non-Alcoholic Fatty Liver Disease Induced by a High-Fat Diet in Mice. Frontiers in Nutrition, 9, 929210. http://dx.doi.org/10.3389/fnut.2022.929210
Zhou, D. D., Saimaiti, A., Luo, M., Huang, S. Y., Xiong, R. G., Shang, A., Gan, R. Y., & Li, H. B. (2022). Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants, 11(1), 155. http://dx.doi.org/10.3390/antiox11010155