面向“碳达峰、碳中和“国家重大科技战略,围绕太阳能燃料应用,基于半导体材料和太阳光,我们结合理论计算-先进合成-前沿表征-光电性能,着重开展了新能源光电催化材料表界面原子结构和原理机制方面的研究工作,主要关注以下两个研究方向:

1. 光电催化
基于半导体材料的光电催化分解水光电极,具有带隙适宜、地球含量丰富、理论光电流高等特点。但是,光电极较差的导电性、光生电荷重新组合和迟缓的光电催化动力学等限制了其光电流响应。鉴于此,如图1所示,系统开展了协同调控光电极的掺杂元素、异质结、电化学助催化剂,构建分级异质结复合光电极,优化其表界面结构和表面态以促进其光电催化分解水性能方面的研究工作。

图1. (a): 光照下,电压1.23V vs RHE.时,各分级光阳极的半导体电极/电解液界面(SEI)的电荷转移示意图和各复合光阳极原子模型示意图。(b):分级FTO/ITO/Fe2O3/Fe2TiO5/FeNiOOH异质结光阳极的STEM和EELS mapping图;(c):光电催化分解水性能;(d):研究工作以前封面发表于Energy Environ. Sci.;(e):2018年International Conference on Renewable Energy国际会议颁发的“Energy Environ. Sci.”最佳海报奖。
[1] P.Y. Tang, H.B. Xie, C. Ros, L.J. Han, M. Biset-Peiró, Y.M. He, W. Kramer, A. Perez-Rodriguez, E. Saucedo, J.R. Galan-Mascaros, T. Andreu, J.R. Morante, J. Arbiol,* Enhanced Photoelectrochemical Water Splitting of Hematite Multilayer Nanowire Photoanodes with Tuning Surface State via Bottom-up Interfacial Engineering, Energy & Environmental Science, 2017, 10, 2124.
[2] P.Y. Tang, L.J. Han, F.S. Hegner, P. Paciok, M. Biset-Peiró, H.C. Du, X.K. Wei, L. Jin, H.B. Xie, Q. Shi, T. Andreu, M. Lira-Cantú, M. Heggen, R.E. Dunin-Borkowski, N. López, J.R. Galán-Mascarós, J.R. Morante,* J. Arbiol,* Boosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification, Advanced Energy Materials, 2019, 9, 1901836.
[3] Guang-Ping Yi, Hong Liu, Yi-Ping Zhao, Tiger H. Tao, Qiang Wang, Peng-Yi Tang,* Revealing the true role of surface states in interface carrier transfer for efficient photoelectrochemical water splitting, Nano Energy, 2025, 140, 111066.
[4] Peng-Yi Tang,* Jordi Arbiol,* The Rise of Single Atom Catalysts in Hematite photoanodes for Photoelectrochemical Water Splitting, The Innovation, 2025, 6, 100810.
[5] T. Zhang, X. Han, H. Liu, M.B. Peiro, X. Zhang, P.P. Tan, P.Y. Tang,* B. Yang, L.R. Zheng,* J.R. Morante, J. Arbiol,* Quasi-Double-Star Nickel and Iron Active Sites for High-Efficiency Carbon Dioxide Electroreduction, Energy & Environmental Science, 2021, 14, 4847-4857.
[6] Z.F. Liang,† D.C. Jiang,† X. Wang, M. Shakouri, T. Zhang, P.Y. Tang,* J. Llorca, L.J. Liu,* M. Heggen, R. E. Dunin-Borkowski, A. Cabot,* J. Arbiol,* Molecular Engineering to Tune the Ligand Environment of Atomically Dispersed Nickel for Efficient Alcohol Electrochemical Oxidation, Advanced Functional Materials, 2021, 31, 2106349.
[7] Chen-Ming Fan, Xin Gao, Peng-Yi Tang,* Qiang Wang,* Bing Li,* Molten Salt-Assisted Synthesis of Porous Precious Metal-Based Single-Atom Catalysts for Oxygen Reduction Reaction, Advanced Science, 2025, 12, 2410784.
[8] Qiang Wang,* Xiao-Qiang Zhan, Chen-Ming Fan, Xiao-Fan Yang, Bing Li, Hong Liu,* Yang-Jiang Wu, Kai-Huan Zhang, Peng-Yi Tang,* Rational design of versatile 1D Ti-O-based core-shell nanostructures for efficient pollutant removal and solar fuel production, Journal of Materials Chemistry A, 2024, 12, 33290-33300.
[9] Jun-Feng Liu,* Tong Li, Qiu-Xia Wang, Hai-Ting Liu, Jing-Jing Wu, Yan-Ping Sui, HuaMing Li, Peng-Yi Tang,* Yong Wang,* Bifunctional PdMoPt trimetallene boosts alcohol-water electrolysis, Chemical Science, 2024, 15, 16660-16668.
[10] P.Y. Tang, J. Arbiol,* Engineering Surface States of Hematite Based Photoanodes for Boosting Photoelectrochemical Water Splitting , Nanoscale Horizons, 2019, 4, 1256.
2. 光电能源材料表界面微结构研究
基于球差矫正透射电子显微镜(Cs TEM)、高角环形暗场(HAADF)、几何相分析(GPA)、电子能量损失谱(EELS)、能量色散X射线谱(EDX)、三维原子模型构建及模拟等技术,关联了材料的化学成分、异质结、晶界、空位和单原子等表界面结构与电催化和太阳能电池性能,建立新能源光电功能材料原子结构和应用性能的构-效关系:
(1) 电催化材料表界面微结构

图2. 基于球差矫正透射电子显微镜技术揭示(a) 晶界原子结构对二维MoS2电催化析氢反应的影响;(b) 化学成分和原子结构对CoFe普鲁士蓝电催化析氧反应的影响;(c) Se原子空位对二维PtSe2材料电催化析氢反应的影响。
[1] Y.M. He,† P.Y. Tang, † Z.L. Hu,† Q.Y. He,† L.Q. Wang, Q.S. Zeng, P. Golani, G.H. Gao, C. Zhu, W. Fu, C.T. Gao, J. Xia, X.L. Wang, X.W. Wang, C. Zhu, Q.M. Ramasse, A. Zhang, J.R. Morante, L. Wang, B.K. Tay, B. Yakobson, A. Trampert, H. Zhang, M.H. Wu,* Q.J. Wang, J. Arbiol,* Z. Liu,* Engineering Grain Boundaries at the 2D Limit for the Hydrogen Evolution Reaction, Nature Communications , 2020, 11, 1.
[2] L.J. Han, P.Y. Tang, A. Reyes-Carmona, B. Rodriguez-Garcia, M. Torrens, J. R. Morante, J. Arbiol, J. R. Galan-Mascaros,* Enhanced activity and acid pH stability of prussian blue-type oxygen evolution electrocatalysts processed by chemical etching, Journal of the American Chemical Society, 2016, 138, 16037-16045.
[3] Ze-Yu Guo, Paul Paciok, Robert Zandonella, Zi-Yun Xi, Hui-Wen Zhu, Peng-Yi Tang,* Peng-Fei Cao,* Joachim Mayer, Jordi Arbiol, Tao Wu, Meng-Xia Xu,* Visualizing Electrochemical CO2 Reduction Reaction: Recent Progress of In Situ Liquid Cell Transmission Electron Microscopy, Advanced Functional Materials, 2025, DOI: 10.1002/adfm.202500915.
[4] P.F. Cao,† P.Y. Tang,† M.F. Bekheet, H.C. Du, L.Y. Yang, L. Haug, A. Gili, B. Bischoff, A. Gurlo, M. Kunz, R. E. Dunin-Borkowski, S. Penner, M. Heggen*, Atomic-Scale Insights into Nickel Exsolution on LaNiO3 Catalysts via In Situ Electron Microscopy, J. Phys. Chem. C, 2022, 126, 1, 786-796.
[5] Y.M. He,†,* L.R. Liu,† C. Zhu,† S.S. Guo,† P. Golani, B. Koo, P.Y. Tang, Z.Q. Zhao, M.Z. Xu, C. Zhu, P. Yu, X. Zhou, C.T. Gao, X.W. Wang, Z.D. Shi, L. Zheng, J.F. Yang, B. Shin, J. Arbiol, H.G. Duan, Y.H. Du, M. Heggen, R. E. Dunin-Borkowski, W.L. Guo, Q.J. Wang,* Z.H. Zhang,* Z. Liu ,* Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production, Nature Catalysis, 2022, 5, 212-221.
[6] Z.D. Shi,† W. Qin,† Z.L. Hu,† M.Y. Ma, H. Liu, Z.W. Shu, Y.B. Jiang, H. Xia, W.Y. Shi, C.Y. Zhang, X.R. Sang, Y.X. Li, C. Guo, C.Z. Liu, C.S. Gong, H. Wang, S. Liu, L. Tapasztó, C.T. Gao, F.C. Liu, P.Y. Tang, Y. Liu, H.G. Duan, E.Q. Xie, Z.H. Zhang,* Z. Liu*, Y.M. He*, Sub-2-nm-droplet-driven growth of amorphous metal chalcogenides approaching the single-layer limit, Nature Materials, 2025, DOI: 10.1038/s41563-025-02273-z.
(2) 有机无机杂化太阳能电池表界面微结构

图3. (a)透射电子显微镜和(b)电子能量损失谱学研究有机-无机杂化钙钛矿材料中聚合物添加剂诱导的晶界缓解效应。
[1] L.C. Zhao,† P.Y. Tang,† D.Y. Luo, M. Ibrahim Dar,* F.T. Eickemeyer, N. Arora, Q. Hu,* J.S. Luo, Y.H. Liu,* S.M. Zakeeruddin, A. Hagfeldt, J. Arbiol, W. Huang, Q.H. Gong, T.P. Russell, R.H. Friend, M. Grätzel,* R. Zhu*, Enabling Full-Scale Grain Boundary Mitigation in Polycrystalline Perovskite Solids, Science Advances, 2022, 8, eabo3733.
[2] Q.Y. Li†, H. Liu†, C.H. Hou, H.M. Yan, S.D. Li, P. Chen, H.Y. Xu, W.Y. Yu, Y.P. Zhao, Y.P. Sui, Q.X. Zhong, Y.Q. Ji, J.J. Shyue, S. Jia, B. Yang, P.Y. Tang, Q.H. Gong, L.C. Zhao*, R. Zhu*, Harmonizing the bilateral bond strength of the interfacial molecule in perovskite solar cells, Nature Energy, 2024, DOI: 10.1038/s41560-024-01642-3.
[3] P. Chen,† Y. Xiao,† J.T. Hu,† S.D. Li,† D.Y. Luo,* R. Su, P. Caprioglio, P. Kaienburg, X.H. Jia, N. Chen, J.J. Wu, Y.P. Sui, P.Y. Tang, H.M. Yan, T.Y. Huang, M.T. Yu, Q.Y. Li, L.C. Zhao, C.H. Hou, Y.W. You, J.J. Shyue, D.K. Wang, X.J. Li, Q. Zhao, Q.H. Gong,* Z.H. Lu,* H.J. Snaith*, R. Zhu*, Multifunctional ytterbium oxide buffer for perovskite solar cells, Nature, 2024, 625, 516–522.
[4] H.B. Xie,† Z.W. Wang,† Z.H. Chen, M. Pols, K. Gałkowski, Mi. Anaya, S. Fu, X.Y. Jia, P.Y. Tang, D. J. Kubicki, A. Agarwalla, H.S. Kim, D. Prochowicz, X. Borrisé, C. Pereyra, M. Bonn, S.M. Zakeeruddin, L. Emsley, J.Arbiol, H.I. Wang, K.J. Tielrooij, S.D. Stranks, S.X. Tao, M. Grätzel, A. Hagfeldt,* M. Lira-Cantu,* Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells, Joule, 2021, 5, 1246-1266.