当前位置: X-MOL首页全球导师 海外导师 › Baran, Phil

个人简介

Experience 2001 – 2003 Postdoctoral Associate Advisor: Professor E.J. Corey Harvard University, Cambridge, Massachusetts 1997 – 2001 Ph.D. Graduate Student in Chemistry Advisor: Professor K.C. Nicolaou The Scripps Research Institute, La Jolla, California 1995 – 1997 B.S. with Honors in Chemistry Advisor: Professor D.I. Schuster New York University, New York, New York 1991 – 1995 Simultaneous high school graduation from Mt. Dora High School and A.A. degree with honors, Lake Sumter Community College, Florida Awards & Professional Activities Danisco Science Excellence Medal Award, 2022 2021 Bristol Chemical Synthesis Syngenta Award, Syngenta 2020 Janssen Prize for Creativity 2019 Inhoffen Medal, Janssen Manchot Research Professorship Award, 2017 Member, The National Academy of Sciences, 2017 Emanuel Merck Lectureship, 2017 • Blavatnik National Laureate in Chemistry Award, 2016 ACS Elias J. Corey Award, 2016 Member, American Academy of Arts and Sciences, 2015 College of Arts and Science Alumni Distinguished Service Award, New York University, 2015 • Reagent of the Year Award (EROS), 2015 Mukaiyama Award, 2014 • MacArthur Fellowship, 2013 Royal Society of Chemistry Synthetic Organic Chemistry Award, 2013 Fellow, Royal Society of Chemistry, 2013 • Fellow, AAAS, 2012 – Present ACS San Diego Section Distinguished Scientist Award, 2012 ISHC Katritzky Heterocyclic Chemistry Award, 2011 Thieme-IUPAC Prize in Synthetic Organic Chemistry, 2010 ACS Award in Pure Chemistry, 2010 Raymond and Beverly Sackler Prize in the Physical Sciences, 2009 National Fresenius Award, 2007 Pfizer Award for Creativity in Organic Chemistry, 2006 Beckman Young Investigator Award, 2006 Alfred P. Sloan Foundation Fellow, 2006-2008 BMS Unrestricted "Freedom to Discover" Grant, 2006 - 2010 NSF Career, 2006 - 2010 Eli Lilly Young Investigator Award, 2005 - 2006 AstraZeneca Excellence in Chemistry Award, 2005 DuPont Young Professor Award, 2005 Roche Excellence in Chemistry Award, 2005 Amgen Young Investigator Award, 2005 Searle Scholar Award, 2005 GlaxoSmithKline Chemistry Scholar Award, 2005-2006

研究领域

In the 20th century the art and science of complex natural product total synthesis defined the frontiers of organic chemistry. Throughout these decades fundamental insights into reactivity and selectivity principles were achieved by these numerous synthetic endeavors. The capability and power of organic synthesis has thus experienced a dramatic increase putting today’s synthetic chemists in the position to construct molecules of more or less any degree of structural complexity. The perception defining “art” in organic synthesis has therefore changed with time and in our opinion is described best by Hendrickson when he addressed the “ideal synthesis” as one which: “…creates a complex molecule… in a sequence of only construction reactions involving no intermediary refunctionalizations, and leading directly to the target, not only its skeleton but also its correctly placed functionality” (Hendrickson, J.B. J. Am. Chem. Soc. 1975, 97, 5784). This prescient statement truly encompasses and epitomizes the “economies” of synthesis design many years before ideas of atom, step, and redox-economy were formally galvanized. Now, in 2010, the field has reached an awe-inspiring level, with many proclaiming that synthesis has matured. But before one declares the science of synthesis an endeavor in engineering, one only needs to reflect on the inspiring ease with which Nature crafts large quantities of her most complex molecules (e.g. vancomycin and taxol). Total synthesis in this century must therefore be keenly aware of this ultimate challenge – to be able to provide large quantities of complex natural products with a minimum amount of labor and material expenses. The natural consequence of pursuing such a goal is to embrace the Hendrickson dictum (vide supra). Pursuing synthesis in such a way forces the practitioner into the role of an inventor. It naturally also leads to explorations into biology since multiple collaborations can be forged with ample materials.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Obexer, R.; Nassir, M.; Moody, E. R.; Baran, P. S.; Lovelock, S. L. Modern Approaches to Therapeutic Oligonucleotide Manufacturing. Science 2024, 384, 6692, 174. Laudadio, G.; Neigenfind, P.; Chebolu, R.; Blasczak, V. D.; Maddirala, S. J.; Palkowitz, M. D.; Bolduc, P. N.; Nicastri, M. C.; Puthukanoori, R. K.; Paraselli, B. R.; Baran, P. S. Synthesis of Unnatural Amino Acids via Ni/Ag Electrocatalytic Cross-Coupling. Org. Lett. 2024, 26, 11, 2276-2281. Smith, B. P.; Truax, N. J.; Pollatos, A. S.; Meanwell, M.; Bedekar, P.; Garrido-Castro, A. F.; Baran, P. S. Total Synthesis of Dragocins A–C via Electrochemical Cyclization. Angew. Chem. Int. Ed. 2024, e202401107 Neigenfind, P.; Massaro, L.; Péter, Á.; Degnan, A. P.; Emmanuel, M. A.; Oderinde, M. S.; He, C.; Peters, D.; El-Hayek Ewing, T.; Kawamata, Y.; Baran, P. S. Simplifying Access to Targeted Protein Degraders via Ni-Electrocatalytic Cross-Coupling. Angew. Chem. Int. Ed. 2023, e202319856. Sun, J.; Endo, H.; Emmanuel, M. A.; Oderinde, M. S.; Kawamata, Y.; Baran, P. S. Simplified Modular Access to Enantiopure 1,2-Aminoalcohols via Ni-Electrocatalytic Decarboxylative Arylation. J. Am. Chem. Soc. 2024, 146, 9, 6209–6216. Gao, Y.; Jiang, B.; Friede, N. C.; Hunter, A. C.; Boucher, D. G.; Minteer, S. D.; Sigman, M. S.; Reisman, S. E.; Baran, P. S. Electrocatalytic Asymmetric Nozaki–Hiyama–Kishi Decarboxylative Coupling: Scope, Applications, and Mechanism. J. Am. Chem. Soc. 2024, 146, 4872-4882. Rubel, C. Z.; Cao, Y.; El-Hayek Ewing, T.; Laudadio, G.; Beutner, G. L.; Wisniewski, S. R.; Wu, X.; Baran, P. S.; Vantourout, J. C.; Engle, K. M. Electroreductive Synthesis of Nickel(0) Complexes. Angew. Chem. Int. Ed. 2024, 63, e202311557. Gan, X.; Zhang, B.; Dao, N.; Bi, C.; Pokle, M.; Collins, M. R.; Tyrol, C. C.; Bolduc, P. N.; Nicastri, M.; Kawamata, Y.; Baran, P. S.; Shenvi, R. Carbon Quaternization of Redox Active Esters and Olefins by Decarboxylative Coupling. Science 2024, 384, 6691, 113-118. Schneider, F.; Guo, Y.; Lin, Y.-C.; Eberle, K.; Chiodi, D.; Greene, J. A.; Lu, C.; Baran, P. S. Total Synthesis of Dynobactin A. J. Am. Chem. Soc. 2024, 146, 10, 6444–6448. Wang, Y.; Bi, C.; Kawamata, Y.; Grant, L.; Samp, L; Richardson, P.; Zhang, S.; Harper, K.; Palkowitz, M.; Vasilopolous, A.; Collins, M.; Oderinde, M.; Tyrol, C.; LaChapelle, E.; Qiao, J.; Baran, P. S. Introducing N-X Anomeric Amides: Powerful Electrophilic Halogenation Reagents. ChemRxiv Preprint 2023 Gao, Y.; Baran, P. S.; Ni-Catalyzed Enantioselective Decarboxylative Acylation: Rapid, Modular Access to α-Amino Ketones. Angew. Chem. Int. Ed.2023, 62, e20231520. Sofiadis, M.; Xu, D.; Rodriguez, A. J.; Nissl, B; Clementson, S; Peterson, N. N.; Baran, P. S. Convergent Total Synthesis of (–)-Cyclopamine. J. Am. Chem. Soc. 2023, 145, 21760-21765. Kawamata, Y.; Baran, P. S. Rapid Alternating Polarity as a Unique Tool for Synthetic Electrochemistry. ChemRxiv Preprint 2023 Laudadio, G.; Neigenfind, P.; Péter, Á.; Rubel, C. Z.; Emmanuel, M. A.; Oderinde, M. S.; Ewing, T. E.-H.; Palkowitz, M. D.; Sloane, J. L.; Gillman, K. W.; Ridge, D.; Mandler, M. D.; Bolduc, P. N.; Nicastri, M. C.; Zhang, B.; Clementson, S.; Petersen, N. N.; Martín-Gago, P.; Mykhailiuk, P.; Engle, K. M.; Baran, P. S. Ni-Electrocatalytic Decarboxylative Arylation to Access Quaternary Centers. Angew. Chem. Int. Ed. 2024, e202314617 Nassir, M; Ociepa, M; Zhang, H.-J.; Grant, L. N.; Simmons, B. J.; Oderinde, M. S.; Kawamata, Y; Cauley, A. N.; Schmidt, M. A.; Eastgate, M. D.; Baran, P. S. Stereocontrolled Radical Thiophosphorylation. J. Am. Chem. Soc. 2023, 145, 28, 15088-15093 Garrido-Castro, A. F.; Hioki, Y; Kusumoto, Y; Hayashi, K; Griffin, J; Harper, K. C.; Kawamata, Y*; Baran, P. S*. Scalable Electrochemical Decarboxylative Olefination Driven by Alternating Polarity. Angew. Chem. Int. Ed. 2023, e202309157. Gao, Y; Zhang, B; He, J; Baran, P. S. Ni-Electrocatalytic Enantioselective Doubly Decarboxylative C(sp3)–C(sp3) Cross Coupling. JACS 2023, 145, 21, 11518-11523. Zhang, B.; He, J.; Gao, Y; Levy, L; Oderinde, M. S.; Palkowitz, M. D.; Murali Dhar, T. G.; Mandler, M. D.; Collins, M. R.; Schmitt, D. C.; Bolduc, P. N.; Chen, T.; Clementson, S.; Petersen, N. N.; Laudadio, G.; Bi, C.; Kawamata, Y.; Baran, P. S. Complex Molecule Synthesis by Electrocatalytic Decarboxylative Cross-coupling. Nature 2023, 623, 745-751. Bi, C.; Wang, Y.; He, C.; Baran, P. S. Enantioselective Total Synthesis of (+)-KB343. J. Am. Chem. Soc. 2023, 145, 14, 7753–7757 Tang, J.; Li, W.; Chiu, T-Y.; Martínez-Peña, F.; Luo, Z.; Chong, C. T.; Wei, Q.; Gazaniga, N.; West, T. J.; See, Y. Y.; Lairson, L. L.; Parker, C. G.; Baran, P. S. Synthesis of Portimines Reveals the Basis of Their Anti-cancer Activity. Nature 2023, 622, 507-513. Zhang, H.-J.; Ociepa, M.; Nassir, M.; Zheng, B.; Lewicki, S. A.; Salmaso, V.; Babury, H.; Nagel, J.; Mirza, S.; Bueschbell, B.; Al-Hroub, H.; Perzanowska, O.; Lin, Z.; Schmidt, M. A.; Eastgate, M. D.; Jacobson, K. A.; Müller, C. E..; Kowalska, J.; Jemielity, J.; Baran, P. S. Stereocontrolled Access to Thioisosteres of Nucleoside Di- and Triphosphates. Nat. Chem. 2023 Hioki, Y.; Costantini, M.; Griffin, J.; Harper, K. C.; Merini, M. P.; Nissl, B.; Kawamata, Y.; Baran, P. S. Overcoming the Limitations of Kolbe Coupling with Waveform-Controlled Electrosynthesis. Science 2023, 380, 6640, 81-87 Laudadio, G.; Palkowitz, M. D.; Ewing, T. E.-H.; Baran, P. S. Decarboxylative Cross-Coupling: A Radical Tool In Medicinal Chemistry. ACS Med. Chem. Lett. 2022, 13, 9, 1413–1420. Lou, T. S.-B.; Kawamata, Y.; Ewing, T.; Correa-Otero, G. A.; Collins, M. R.; Baran, P. S. Scalable, Chemoselective Ni-Electrocatalytic Sulfinylation of Aryl Halides with SO2, Angew. Chem. Int. Ed. 2022, 61, e2022080. Lin, Y.-C.; Schneider, F.; Eberle, K, J.; Chiodi, D.; Nakamura, H.; Reisberg, S. H.; Chen, J.; Saito, M.; Baran, P. S. Atroposelective Total Synthesis of Darobactin A. J. Am. Chem. Soc. 2022, 144, 32, 14458–14462. Palkowitz, M. D., Laudadio, G.; Kolb, S.; Choi, J.; Oderinde, M. S.; Ewing, T. E.-H.; Bolduc, P.; Chen, T.; Zhang, H.; Cheng, P. T. W.; Zhang, B.; Mandler, M.; Richter, J. M.; Collins, M. R.; Schioldager, R. L.; T. G. M. Dhar; Vokits, B.; Zhu, Y.; Echeverria, P.-G.; Poss, M. A.; Shaw, S.; Clementson, S.; Petersen, N. N.; Mykhailiuk, P.; Baran, P. S. Overcoming Limitations in Decarboxylative Arylation via Ag-Ni Electrocatalysis. J. Am. Chem. Soc. 2022, 144, 38, 17709–17720. Gao, Y.; Zhang, B.; Levy, L; Zhang, H.-J.; He, C.; Baran, P. S. Ni-Catalyzed Enantioselective Dialkyl Carbinol Synthesis via Decarboxylative Cross-Coupling: Development, Scope, and Applications. J. Am. Chem. Soc. 2022, 144, 24, 10992-11002. Hayashi, K.; Griffin, J.; Harper, K. C.; Kawamata, Y.; Baran, P. S. Chemoselective, Metal-free, (Hetero)Arene Electroreduction Enabled by Rapid Alternating Polarity. J. Am. Chem. Soc. 2022, 144, 13, 5762–5768 Kawamata, Y.*; Ryu, K. A.*; Hermann, G. N.*; Sandahl, A.; Vantourout, J. C.; Olow, A. K.; Adams, L.-T., A.; Rivera-Chao, E.; Roberts, L. R.; Gnaim, S.; Nassir, M.; Oslund, R. C.*; Fadeyi, O. O.*; Baran, P. S.* Electroaffinity Labeling: A New Platform for Chemoproteomic-based Target Identification. Nat. Chem. 2023, 15, 1267-1275. Zhang, B.; Gao, Y.; Hioki, Y.; Oderinde, M. S.; Qiao, J. X.; Rodriguez, K. X.; Zhang, H.-J.; Kawmata, Y.; Baran, P. S. Ni-Electrocatalytic C(sp3 )–C(sp3 ) Doubly Decarboxylative Coupling. Nature 2022, 606, 313–318. Gu, J.; Rodriguez, K. X.; Kanda, Y.; Yang, S.; Ociepa, M.; Wilke, H.; Abrishami, A. V.; Jørgensen, L.; Skak-Nielsen, T.; Chen, J. S.; Baran, P. S. Convergent Total Synthesis of (+)-Calcipotriol: A Scalable, Modular Approach to Vitamin D Analogs. PNAS, 2022, 119, e2200814119. Harwood, S. J.; Palkowitz, M. D.; Gannet, C. N.; Perez, P.; Yao, Z.; Sun, L.; Abruna, H. D.; Anderson, S. L.; Baran, P. S. Modular Terpene Synthesis Enabled by Mild Electrochemical Couplings. Science 2022, 375, 745 - 752 Knouse, K. W.; Flood, D. T.; Vantourout, J. C.; Schmidt, M. A.: Mcdonald, I. M.; Eastgate, M. D.; Baran, P. S. Nature Chose Phosphates and Chemists Should Too: How Emerging P(V) Methods Can Augment Existing Strategies. ACS Cent. Sci. 2021, 7, 1473 - 1485 Gnaim, S.; Bauer, A.; Zhang, H.-J.; Chen, L.; Gannet, C.; Malapit, C. A.; Hill, D.; Vogt, D.; Tang, Tianhua, T.; Daley, R.; Hao, W.; Quertenmont, M.; Beck, W. D.; Kandahari, E.; Vantourout, J. C.; Echeverria, P.-G.; Abruna, H.; Blackmond, D.; Minteer, S.; Reisman, S.; Sigman, M. S.; Baran, P. S. Cobalt-Electrocatalytic Hydrogen Atom Transfer for Functionalization of Unsaturated C-C Bonds. Nature 2022, 605, 687 Ociepa, M.; Knouse, K. W.; He. D.; Vantourout, J. C.; Flood, D. T.; Padial, N. M.; Chen, J. S.; Sanchez, B. B.; Sturgell, E. J.; Zheng, B.; Qiu, S.; Schmidt, M. A.; Eastgate, M. D.; Baran, P. S. Mild and Chemoselective Phorsphorylation of Alcohols Using a Psi-Reagent. Org. Lett. 2021, 23, 9337 - 9342 Zhang, H.-J.; Chen, L.; Oderinde, M. S.; Edwards, J. T.; Kawamata, Y.; Baran, P. S. Chemoselective, Scalable Nickel-Electrocatalytic O-Arylation of Alcohols. Angew. Chem. Int. Ed. 2021, 60, 20700 - 20705 Choi, J.; Laudadio, G.; Godineau, E.; Baran. P. S. Practical and Regioselective Synthesis of C4-Alkylated Pyridines. J. Am. Chem. Soc. 2021, 143, 11927 - 11933 Maity, P.; Anandamurthy, A. S.; Shekarappa, V.; Vaidyanathan, R.; Zheng, B.; Zhu, J.; Schmidt, M. A.; Fox, R. J.; Knouse, K. W.; Vantourout, J. C.; Baran, P. S.; Eastgate, M. D. Synthesis of a Phosphorous Sulfur Incorporating Reagent for the Enantioselective Synthesis of Thiophosphates. Org. Synth. 2021, 98, 97-116 Huang, Y.; Knouse, K. W.; Qiu, S.; Hao, W.; Padial, N. M.; Vantourout, J. C.; Zheng, B.; Mercer, S. E.; Lopez, J. O.; Narayan, R.; Olson, R. E.; Blackmond, D. G.; Eastgate, M. D.; Schmidt, M. A.; McDonald, I. M.; Baran, P. S. A P(V)-Platform for Oligonucleotide Synthesis. Science, 2021, 373, 1265 - 1270 Kawamata, Y.; Hayashi, K.; Carlson, E.; Shaji, S.; Waldmann, D.; Simmons, B. J.; Edwards, J.; Zapf, C. W.; Saito, M.; Baran, P. S. Chemoselective Electrosynthesis Using Rapid Alternating Polarity. J. Am. Chem. Soc. 2021, 143, 16580 - 16588 Gao, Y.; Hill, D. E.; Hao, W.; McNicolas, B. J.; Vantourout, J. C.; Hadt, R. G.; Reisman, S. E.; Blackmond, D.; Baran, P. S. Electrochemical Nozaki–Hiyama–Kishi Coupling: Scope, Applications, and Mechanism. J. Am. Chem. Soc. 2021, 143, 9478 - 9488 Barton, L. M.; Chen, L.; Blackmond, D.; Baran, P. S. Electrochemical Borylation of Carboxylic Acids. PNAS, 2021, 118, e2109408118 Saito, M.; Kawamata, Y.; Meanwell, M.; Navratil, R.; Chiodi, D.; Carlson, E.; Hu, P.; Chen, L.; Udyavara, S.; Kingston, C.; Tanwar, M.; Tyagi, S.; McKillan, B. P.; Gichina, M. G.; Schmidt, M. A.; Eastgate, M. D.; Lamberto, M.; He, C.; Tang, T.; Malapit, C.; Sigman, M. S.; Minteer, S. D.; Neurock, M.; Baran, P. S. N-Ammonium Ylide Mediators for Electrochemical C–H Oxidation. J. Am. Chem. Soc. 2021, 143, 7859 - 7867 Peters, D. S.; Pitts, C. R.; McClymont, K. S.; Stratton, T. P.; Bi, C.; Baran, P. S. Ideality in Context: Motivations for Total Synthesis. Acc. Chem. Res. 2021, 54, 605 - 617 Gnaim, S.; Vantourout, J. C.; Serpier, F.; Echeverria, P.-G.; Baran, P. S. Carbonyl Desaturation: Where Does Catalysis Stand? ACS Catal. 2021, 11, 883 - 892

推荐链接
down
wechat
bug