当前位置: X-MOL首页全球导师 海外导师 › Pan, Xuejun

个人简介

Ph.D. Applied Bioscience, Hokkaido University, Japan, 1999. Ph.D. Chemical Engineering, Tianjin University of Science and Technology, China, 1993. M.Eng. Chemical Engineering, Tianjin University of Science and Technology, China, 1986. B.Eng. Chemical Engineering, Tianjin University of Science and Technology, China, 1983.

研究领域

Dr. Pan’s research is focused on developing innovative biorefining processes for producing energy, fuels, chemicals, and materials from renewable resources (biomass). Some specific research interests of Dr. Pan are listed below. Pretreatment and fractionation of lignocellulosic biomass for bioconversion to chemicals and fuels Enzymatic and non-enzymatic saccharification of cellulose and lignocellulose Catalytic conversion of lignocellulose to drop-in hydrocarbon fuel Platform chemicals from biomass Functional materials from cellulose, lignin, hemicellulose, and extractives

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Chen, L.H., J.Z. Dou, Q.L. Ma, N. Li, R.C. Wu, H.Y. Bian, D.J. Yelle, T. Vuorinen, S.Y. Fu, X.J. Pan, J.Y. Zhu. Rapid and near-complete dissolution of wood lignin at ≤ 80°C by a recyclable acid hydrotrope. Science Advances. 2017, 3, e1701735. Yoo, C.G., N. Li, M. Swannell, and X.J. Pan. Isomerization of Glucose to Fructose catalyzed by Lithium Bromide in Water. Green Chemistry, 2017, 19, 4402-4411 Zhang, H.D., N. Li, X.J. Pan, S.B. Wu, and J. Xie. Direct transformation of cellulose to gluconic acid in concentrated iron (III) chloride under mild conditions. ACS Sustainable Chemistry & Engineering. 2017, 5 (5), 4066-4072 Yoo, C.G., S.T. Zhang, and X.J. Pan. Effective conversion of biomass into bromomethylfurfural, furfural, and depolymerized lignin in lithium bromide molten salt hydrate of a biphasic system. RSC Advances. 2017, 7, 300-308. Yang, X.H., N. Li, X.L. Lin, X.J. Pan, and Y.H. Zhou. Selective cleavage of the aryl ether bonds in lignin for depolymerization by acidic lithium bromide molten salt hydrate under mild conditions. Journal of Agricultural Food and Chemistry, 2016, 44, 8379-8387. Yang, Q. and X.J. Pan. Bifunctional porous polymers bearing boronic and sulfonic acids for hydrolysis of cellulose. ACS Sustainable Chemistry and Engineering, 2016, 4, 4824-4830. Li, N., X.J. Pan, and J. Alexander. A facile and fast method for quantitating lignin in lignocellulosic biomass using acidic lithium bromide trihydrate (ALBTH). Green Chemistry, 2016, 18, 5367-5376. Yoo, C.G. and X.J. Pan. Pretreatment of lignocellulosic feedstocks. In: “Bioenergy: Principles and Applications”, Edited by Y.B. Li and S.K. Khanal, John Wiley & Sons, Inc., 2016, pp. 201-223. (ISBN: 9781118568316) Yang, Q. and X.J. Pan. Synthesis and application of bifunctional porous polymers bearing chloride and sulfonic acid as cellulase-mimetic solid acids for cellulose hydrolysis. BioEnergy Research, 2016, 9, 578-586. Yang, Q. and X.J. Pan. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 2016, 113, 1213–1224. Zhang, H.D., N. Li, X.J. Pan, S.B. Wu, and J. Xie. Oxidative conversion of glucose to gluconic acid by iron (III) chloride in water under mild conditions. Green Chemistry, 2016, 18, 2308-2312. Yoo, C.G., H. Kim, F.C. Lu, A. Azarpira, X.J. Pan, K.K. Oh, J.S. Kim, J. Ralph, and T.H. Kim. Understanding the physicochemical characteristics and the improved enzymatic saccharification of corn stover pretreated with aqueous and gaseous ammonia. BioEnergy Research, 2016, 9 (1), 67-76. Harde, S., Z.N. Wang, M. Horne, J.Y. Zhu, and X.J. Pan. Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina. Fuel, 2016, 175, 64-74. Pang, Z.Q., C.H. Dong, and X.J. Pan. Enhanced deconstruction and dissolution of lignocellulosic biomass in ionic liquid at higher water content by lithium chloride. Cellulose, 2016, 23, 323-338. Yang, Q. and X.J. Pan. Fabrication and applications of biocompatible graphene oxide and graphene. In: “Handbook of Graphene Science”, Edited by Mahmood Aliofkhazraei, Nasar Ali, William I. Milne, Cengiz S. Ozkan, Stanislaw Mitura, Juana L. Gervasoni. CRC Press/Taylor & Francis, 2016, pp. 125-132. (ISBN: 9781466591271) Zhang, C., R. Gleisner, C.J. Houtman, X. Pan, and J.Y. Zhu. Sulfite pretreatment to overcome the recalcitrance of lignocelluloses for bioconversion of woody biomass. In: “Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery”, Edited by S. I. Mussatto, Elsevier, 2016, pp. 495-537. (ISBN: 9780128023235) Yoo, C.G. and X.J. Pan. Fuel ethanol from lignocellulosic biomass. In: “Handbook of Clean Energy Systems”, Edited by J.Y. Yan, Vol. 1: Renewable Energy, p119-138, Wiley, 2015. Noparat, P., P. Prasertsan, S. O-Thong, and X.J. Pan. Dilute acid pretreatment of oil palm trunk biomass at high temperature for enzymatic hydrolysis. Energy Procedia, 2015, 79, 924-929. Grabber, J., N. Santoro, C.E. Foster, S. Elumalai, J. Ralph, and X.J. Pan. Incorporation of flavonoid derivatives or pentagalloyl glucose into lignin enhances cell wall saccharification following mild alkaline or acidic pretreatments. BioEnergy Research, 2015, 8, 1391-1400. Zeng, J.J., C.G. Yoo, F. Wang, X.J. Pan, W. Vermerris, and Z.H. Tong. Biomimetic Fenton-catalyzed lignin depolymerization to high value aromatics and dicarboxylic acids. ChemSusChem, 2015, 8, 861-871.

推荐链接
down
wechat
bug