当前位置: X-MOL首页全球导师 国内导师 › 杜春雨

个人简介

工作经历 2000.7-2003.6 哈尔滨工业大学应用化学系 助教 2003.7-2007.10 哈尔滨工业大学应用化学系 讲师 2007.11-2012.12 哈尔滨工业大学化工学院 副教授 2009.5-哈尔滨工业大学化工学院 博士生导师 2012.12- 哈尔滨工业大学化工学院 教授 2013.1-2021.4 哈尔滨工业大学特种化学电源研究所 副所长 2015.1-2017.1 哈尔滨工业大学化工学院 院长助理 2017.1- 哈尔滨工业大学化工学院 副院长 2021.4- 哈尔滨工业大学特种化学电源研究所 所长 教育经历 1994年-1998年, 就读于哈尔滨工业大学, 电化学工程学士 1998年-2000年, 就读于哈尔滨工业大学, 应用化学硕士 2001年-2004年, 就读于哈尔滨工业大学, 环境科学与工程博士 2006年-2007年, 香港科技大学, 博士后 主要任职 2007年-2008年, 应用化学系主任助理 2008年-2014年, 化工学院学科建设办公室主任 2013年-2021年, 特种化学电源研究所副所长 2015年-2016年,化工学院院长助理 2017年至今,化工学院副院长 2021年至今,特种化学电源研究所所长 中国铅酸电池标准化委员会委员 中国材料学会储能与动力电池材料委员会委员 中国化学与物理电源行业协会电池专家委员会委员 中国电动汽车计量技术委员会委员 《高校化学工程学报》编委会委员 《ISRN Corrosion》编委 《化学计量与分析》编委 《锂电世界》编委

研究领域

锂离子电池 聚合物电解质膜燃料电池、电催化 纳米电极材料 电化学系统数学仿真

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

锂离子电池 Ren Y, Xiang L, Yin X, et al. Ultrathin Si Nanosheets Dispersed in Graphene Matrix Enable Stable Interface and High Rate Capability of Anode for Lithium‐ion Batteries[J]. Advanced Functional Materials, 2022, 32(16): 2110046. Xu X, Zhu H, Tang Y, et al. Spreading monoclinic boundary network between hexagonal primary grains for high performance Ni-rich cathode materials[J]. Nano Energy, 2022, 100: 107502. Ren Y, Yin X, Xiao R, et al. Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 431: 133982. Zhou X, Liu Y, Ren Y, et al. Engineering molecular polymerization for template‐free SiOx/C hollow spheres as ultrastable anodes in lithium‐ion batteries[J]. Advanced Functional Materials, 2021, 31(21): 2101145. Xu X, Huo H, Jian J, et al. Radially oriented single‐crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0. 8Co0. 1Mn0. 1O2 cathode material for lithium‐ion batteries[J]. Advanced Energy Materials, 2019, 9(15): 1803963. Xu X, Xiang L, Wang L, et al. Progressive concentration gradient nickel-rich oxide cathode material for high-energy and long-life lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(13): 7728-7735. Zhou X, Liu Y, Du C, et al. Layer-by-layer engineered silicon-based sandwich nanomat as flexible anode for lithium-ion batteries[J]. ACS applied materials & interfaces, 2019, 11(43): 39970-39978. Xu X, Jian J, Xiang L, et al. Enhancing high-voltage performances of nickel-based cathode material via aluminum and progressive concentration gradient modification[J]. Electrochimica Acta, 2019, 317: 459-467. He X, Han G, Lou S, et al. Improved electrochemical performance of LiNi0. 8Co0. 15Al0. 05O2 cathode material by coating of graphene nanodots[J]. Journal of the Electrochemical Society, 2019, 166(6): A1038. Geng T, Du C, Cheng X, et al. A multifunctional silicotungstic acid-modified Li-rich manganese-based cathode material with excellent electrochemical properties[J]. Journal of Solid State Electrochemistry, 2019, 23(1): 101-108. Zhou X, Liu Y, Du C, et al. Free-standing sandwich-type graphene/nanocellulose/silicon laminar anode for flexible rechargeable lithium ion batteries[J]. ACS applied materials & interfaces, 2018, 10(35): 29638-29646. Zhou X, Liu Y, Du C, et al. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries[J]. Journal of Power Sources, 2018, 381: 156-163. H. Liu, C. Chen, C. Y. Du, X. S. He ,G.P. Yin, B. Song, P.J. Zuo, X.Q. Cheng , Y.L. Ma, Y.Z. Gao,Lithium-rich Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries J. Mater. Chem. A, 2015, 3,2634-2641 Y. Z. Cui, C. Y. Du,G.P. Yin,Y.Z. Gao, L. L. Zhang, T. Guan, L. J. Yang, F.P. Wang. Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge. J. Power Sources. 2015, 279, 123–132 G.Y. Cheng, P.J. Zuo, L.G. Wang, W. Shi, Y.L. Ma, C.Y. Du, X.Q. Cheng, Y.Z. Gao, G.P. Yin, High-performance carbon-coated LiMnPO4 nanocomposites by facile two-step solid-state synthesis for lithium-ion battery. J Solid. State. Electr. 2015, 19(1), 281. L.G. Wang, P.J. Zuo, G.P. Yin, Y.L. Ma, X.Q. Cheng, C.Y. Du, Y.Z. Gao, Improved electrochemical performance and capacity fading mechanism of nano-sized LiMn0.9Fe0.1PO4 cathode modified by polyacene coating. J. Mater. Chem. A. 2015, 3(4), 1569. H. Liu , C.Y. Du , G.P. Yin, B. Song, P.J. Zuo, X.Q. Cheng , Y.L. Ma, Y.Z. Gao, An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J. Mater. Chem. A 2014, 2(37), 15640. L.J. Yang, X.Q. Cheng, Y.Z. Gao, Y.L. Ma, P.J. Zuo, C.Y. Du, Y.Z.Cui, T.Guan, S.F. Lou, F.P. Wang, W.D.Fei, G.P. Yin, Lithium deposition on graphite anode during long-term cycles and the effect on capacity loss. RSC Adv. 2014, 4(50), 26335. L.J. Yang, X.Q. Cheng, Y.Z. Gao, P.J. Zuo, Y.L. Ma, C.Y. Du, B. Shen, Y.Z. Cui, T. Guan, G.P. Yin, Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling. ACS Appl. Mater. Inter. 2014, 6(15), 12962. L.L. Zhang, Y.L. Ma, C.Y. Du, G.P. Yin, Research on the high-voltage electrolyte for lithium ion batteries. Process. Chem. 2014, 26(4), 553. T. Guan, P.J Zuo, S. Sun, C.Y. Du, L.L. Zhang, Y.Z. Cui, L. J. Yang, Y.Z. Gao, G.P.Yin, F.P.Wang, Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests. J. Power Sources. 2014, 268, 816 L.L. Zhang, Y.L. Ma, X.Q. Cheng, P.J Zuo, Y.Z. Cui, T. Guan, C.Y. Du, Y.Z. Gao, G.P. Yin, Enhancement of high voltage cycling performance and thermal stability of LiNi1/3Co1/3Mn1/3O2 cathode by use of boron-based additives. J. Power Sources. 2014, 263,146. M. Chen, C.Y. Du, B. Song, K. Xiong, G.P. Yin, P.J. Zuo , X.Q. Cheng, High-performance LiFePO4 cathode material from FePO4 microspheres with carbon nanotube networks embedded for lithium ion batteries. J. Power Sources. 2013, 223, 100. P.J. Zuo, T. Wang, G.Y. Cheng, C.Y. Du, Y.L. Ma, X.Q. Cheng, G.P. Yin, Improved electrochemical performance of nano-crystalline Li2FeSiO4/C cathode material prepared by the optimization of sintering temperature. J. Solid. State. Electr. 2013, 17(7), 1955. P.J. Zuo, G.Y. Cheng, L.G. Wang, Y.L. Ma, C.Y. Du, X.Q. Cheng, Z.B. Wang, G.P. Yin, Ascorbic acid-assisted solvothermal synthesis of LiMn0.9Fe0.1PO4/C nanoplatelets with enhanced electrochemical performance for lithium ion batteries. J. Power Sources. 2013, 243, 872. M. Chen, C.Y. Du , L. Wang, P.F. Shi, Silicon/Graphite/Polyaniline nanocomposite with improved lithium-storage capacity and cyclability as anode materials for lithium-ion batteries. Int. J. Electrochem. SC. 2012, 7(1), 819. P.J. Zuo, T. Wang, G.Y. Cheng, X.Q. Cheng, C.Y. Du, G.P. Yin, Effects of carbon on the structure and electrochemical performance of Li2FeSiO4 cathode materials for lithium-ion batteries. RSC Adv. 2012, 2(17), 6994. F. Yang, K. Cheng, X.L. Liu, S. Chang, J.L. Yin, C.Y. Du, L. Du, G.L. Wang, D.X. Cao, Direct peroxide-peroxide fuel cell - Part 2: Effects of conditions on the performance. J. Power Sources. 2012, 217, 569. Y.X. An, P.J. Zuo, C.Y. Du, Y.L. Ma, X.Q. Cheng, J.Y. Lin, G.P. Yin, Effects of VC-LiBOB binary additives on SEI formation in ionic liquid-organic composite electrolyte. RSC Adv. 2012, 2(10), 4097. C.Y. Du, C.H. Gao, G.P. Yin, M. Chen, L. Wang, Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries. Energ. Environ. Sci. 2011, 4(3), 1037. C.Y. Du, M. Chen, L. Wang, G.P. Yin, Covalently-functionalizing synthesis of Si@C core-shell nanocomposites as high-capacity anode materials for lithium-ion batteries. J. Mater. Chem. 2011, 21(39), 15692. 电催化 Li X, Han G, Lou S, et al. Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries[J]. Nano Energy, 2022, 93: 106810. Han G, Zhang X, Liu W, et al. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites[J]. Nature communications, 2021, 12(1): 1-9. Han G, Li L, Li X, et al. Proof-of-concept fabrication of carbon structure in Cu–N–C catalysts of both high ORR activity and stability[J]. Carbon, 2021, 174: 683-692. Duan Z, Han G, Huo H, et al. Monovacancy Coupled Pyridinic N Site Enables Surging Oxygen Reduction Activity of Metal-Free CN x Catalyst[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1264-1271. Han G, Sun Y, Liu Y, et al. Novel carbon structures as highly stable supports for electrocatalysts in acid media: regulating the oxygen functionalization behavior of carbon[J]. New Journal of Chemistry, 2021, 45(24): 10802-10809. Han G, Zheng Y, Zhang X, et al. High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction[J]. Nano Energy, 2019, 66: 104088. An M, Du C, Du L, et al. Enhanced Methanol Oxidation in Acid Media on Pt/S, P Co‐doped Graphene with 3D Porous Network Structure Engineering[J]. ChemElectroChem, 2019, 6(4): 1157-1165. Wang Y, Wang J, Han G, et al. Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction[J]. Ceramics International, 2019, 45(2): 2411-2417. Wang Y, Wang J, Han G, et al. Superior catalytic performance and CO tolerance of Ru@ Pt/C-TiO2 electrocatalyst toward methanol oxidation reaction[J]. Applied Surface Science, 2019, 473: 943-950. An M, Du L, Du C, et al. Pt nanoparticles supported by sulfur and phosphorus co-doped graphene as highly active catalyst for acidic methanol electrooxidation[J]. Electrochimica Acta, 2018, 285: 202-213. Q. Tan, C.Y. Du, Y.R. Sun, L. Du, G.P. Yin, Y.Z. Gao, Nickel-doped ceria nanoparticles for promoting catalytic activity of Pt/C for ethanol electrooxidation. J. Power Sources. 2014, 236, 310. Q. Tan, C.Y. Du, Y.R. Sun, G.P. Yin, Y.Z. Gao,. J. Mater. Chem. A, 2014, 2,1429 L. Du, S. Zhang, G.Y. Chen, G.P. Yin, C.Y. Du, Q. Tan, Y.R. Sun, Y.T. Qu, Y.Z. Gao, Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size. ACS Appl. Mater. Inter. 2014, 6(16), 14043. N. Zhang, S. Zhang, C.Y. Du, Z.B. Wang, Y.Y. Shao, F.D. Kong, Y.H. Lin, G.P. Yin, Pt/Tin Oxide/Carbon nanocomposites as promising oxygen reduction electrocatalyst with improved stability and activity. Electrochim. Acta. 2014, 117(20), 413. C.Y. Du, M. Chen, W.G. Wang, Q. Tan, K. Xiong, G.P. Yin, Platinum-based intermetallic nanotubes with a core-shell structure as highly active and durable catalysts for fuel cell applications. J. Power Sources. 2013, 240(15), 630. D.J. Zhao, S. Zhang, G.P. Yin, C.Y. Du, Z.B. Wang, J. Wei, Tungsten doped Co-Se nanocomposites as an efficient non precious metal catalyst for oxygen reduction. Electrochim. Acta. 2013, 91(28), 179. Y. Gu, C.T. Liu, J. Gao, K. Wang, Y.R. Sun, C.Y. Du, Effects of microwave power on performance of Pt/CeO2/MWCNTs catalysts prepared by microwave-assisted polyol process for methanol electrooxidation. Materials design, progress and applications. 2013, (690-693), 1500. Q. Tan, C.Y. Du, G.P. Yin, P.J. Zuo, X.Q. Cheng, M. Chen, Highly efficient and stable nonplatinum anode catalyst with Au@Pd core–shell nanostructures for methanol electrooxidation. J. Catal. 2012, 295, 217. C.T. Liu, C. Meng, C.Y. Du, J. Zhang, G.P. Yin, P.F. Shi, Y.R. Sun, Durability of ordered mesoporous carbon supported Pt particles as catalysts for direct formic acid fuel cells. Int. J. Electrochem. Sci. 2012, 7, 10592. L.H. Xing, Z.B. Wang, C.Y. Du, G.P. Yin, The influence of anode diffusion layer on the performance of direct dimethyl ether fuel cell. Int. J. Energ. Res. 2012, 36(7), 886. L.H. Xing, G.P. Yin, Z.B. Wang, S. Zhang, Y.Z. Gao, C.Y. Du, Investigation on the durability of direct dimethyl ether fuel cell. Part I: Anode degradation. J. Power Sources. 2012, 198(15), 170. F.D. Kong, S. Zhang, G.P. Yin, Z.B. Wang, C.Y. Du, G.Y. Chen, N. Zhang, Electrochemical studies of Pt/Ir-IrO2 electrocatalyst as a bifunctional oxygen electrode. Int. J. Hydrogen Energ. 2012, 37(1), 6759. F.D. Kong, S. Zhang, G.P. Yin, N. Zhang, Z.B. Wang, C.Y. Du, Pt/porous-IrO2 nanocomposite as promising electrocatalyst for unitized regenerative fuel cell. Electrochem. Commun. 2012, 14(1), 63. F.D. Kong, S. Zhang, G.P. Yin, N. Zhang, Z.B. Wang, C.Y. Du, Preparation of Pt/Irx(IrO2)10-x bifunctional oxygen catalyst for unitized regenerative fuel cell. J. Power Sources. 2012, 210(15), 321. D.J. Zhao, S. Zhang, G.P. Yin, C.Y. Du, Z.B. Wang, J. Wei, Effect of Se in Co-based selenides towards oxygen reduction electrocatalytic activity. J. Power Sources. 2012, 206(15), 103. C.Y. Du, M. Chen, W.G. Wang, G.P. Yin, Nanoporous PdNi alloy nanowires as highly active catalysts for the electro-oxidation of formic acid. ACS Appl. Mater. Inter. 2011, 3(2), 105. M. Chen, C.Y. Du, J. Zhang, P.P. Wang, T. Zhu, Effect, mechanism and recovery of nitrogen oxides poisoning on oxygen reduction reaction at Pt/C catalysts. J. Power Sources. 2011, 196(2), 620. T. Zhu, C.Y. Du, C.T. Liu、G. P. Yin, P. F. Shi, SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells. Appl. Surf. Sci. 2011, 257(6), 2371. L.H. Xing, Y.Z. Gao, Z.B. Wang, C.Y. Du, G.P. Yin, Effect of anode diffusion layer fabricated with mesoporous carbon on the performance of direct dimethyl ether fuel cell. Int. J. Hydrogen Energ. 2011, 36(17), 11102. C.Y. Du , M. Chen, W.G. Wang, G.P. Yin, P.F. Shi, Electrodeposited PdNi2 alloy with novelly enhanced catalytic activity for electrooxidation of formic acid. Electrochem. Commun. 2010, 12(6), 843. G.J. Wang. Y.Z. Gao, Z.B. Wang, C.Y. Du, J. J. Wang, G.P. Yin, Investigation of PtNi/C anode electrocatalysts for direct borohydride fuel cell. J. Power Sources. 2010, 195(1), 185. G. J. Wang, Y. Z. Gao, Z. B. Wang, C. Y. Du, G.P. Yin, A membrane electrode assembly with high fuel coulombic efficiency for passive direct borohydride fuel cells. Electrochem. Commun. 2010, 12(8), 1070.

推荐链接
down
wechat
bug