当前位置: X-MOL首页全球导师 国内导师 › 王宏涛

个人简介

王宏涛,浙江大学求是特聘教授,浙江大学交叉力学中心执行主任,杰出青年基金获得者,清华大学及哈佛大学博士。曾获第十五届中国力学学会青年科技奖(2017)、优秀青年基金(2013),入选中组部万人计划(2012)、教育部“新世纪优秀人才计划”(2009),曾获全国百篇优秀博士论文提名(2007)、清华大学优秀博士论文一等奖(2004)以及哈佛大学Award of Distinction in Teaching(2007)。 本人一直致力于将国家重大需求与基础研究结合,在纳观及原子尺度探究材料微观结构与宏观性能的力学关联,创新发展微纳米力学原位实验方法、技术以及计算模拟方法。所开展的实验方法、技术及理论研究工作获得了国内外的学术认可与好评,相关成果已应用于国防重点单位和企业。至今已在Nature、PRL、Nano Lett.、Nature Comm.等期刊发表SCI论文100余篇,SCI他引2000余次,相关成果为Science、Nature等著名期刊引用并积极评价。 近年来,重点推进力学与人工智能的交叉融合。2018年与杨卫院士共同创建浙江大学交叉力学中心,旨在推动人工智能与力学学科交叉融合,以引领力学学科发展: 1)首次提出柔性孪生机器人概念,倡导中国阿凡达计划,发展深度动力机器人软硬件; 2)推动人工智能在力学学科应用,开发基于深度学习的跨尺度算法以及世界首台四维透射电子显微镜设备。 工作经历 2018/10–至今,浙江大学交叉力学中心,执行主任 2009/08–至今,浙江大学航空航天学院,副教授、教授 部分专利 王宏涛,刘嘉斌.透射电子显微镜用压电驱动式双轴倾转样品杆.专利申请号:201510090691.3,专利申请日:2015.02.28,专利授权日:2018.06.05.浙江大学. 王宏涛,刘嘉斌.透射电子显微镜原位环境双倾样品杆.专利申请号:201510090402.X,专利申请日:2015.02.28,专利授权日:2019.01.01.浙江大学. 王宏涛,刘嘉斌.透射电子显微镜原位高低频疲劳双倾样品杆,专利申请号:201510090268.3,专利申请日:2015.02.28,专利授权日:2018.06.15.浙江大学. 王宏涛,刘嘉斌,方攸同.一种高铁接触线用的铜合金及其制备方法,专利申请号:201710218266.7,专利申请日:2017.04.05,专利授权日:2018.11.22通知授权.浙江大学. 王宏涛,刘嘉斌,方攸同.一种用于高铁接触线的铜合金及其制备方法,专利申请号:201710217631.2,专利申请日:2017.04.05,专利授权日:2019.1.10通知授权.浙江大学. 王宏涛,刘嘉斌,方攸同.一种高强高韧全奥氏体不锈钢的加工方法.专利申请号201610436538.6,专利申请日:2016.06.17,专利授权日:2018.05.04,浙江大学. 刘嘉斌,王宏涛,方攸同.一种高强高韧不锈钢及其加工方法.专利申请号:201610437107.1,专利申请日:2016.06.17,专利授权日:2017.12.15.浙江大学. 刘嘉斌,侯梦莲,王宏涛,徐雨晴,方攸同,孟亮,王立天,田雨.作为时速400公里以上高速铁路接触线材料应用的超强高导铜合金.专利申请号:201610319172.4,专利申请日:2016.05.16,专利授权日:2018.03.09.浙江大学. 刘嘉斌,侯梦莲,王宏涛,徐雨晴,方攸同,孟亮,王立天,田雨.高强高导铜合金及其作为时速400公里以上高速铁路接触线材料的应用.专利申请号:201610321078.2,专利申请日:2016.05.16,专利授权日:2017.10.13..浙江大学. 刘嘉斌,卜叶强,陈陈旭,王宏涛.一种制备密排六方结构的高熵合金的方法.专利申请号:201710329341.7,专利申请日:2017.05.11,专利授权日2018.09.11.浙江大学. 刘嘉斌,陈陈旭,孟亮,曾跃武,王宏涛.用于透射电镜的原位拉伸试样的制备方法.专利申请号:201410172126.7,专利申请日:2014.04.28,专利授权日:2016.08.31.浙江大学. 刘嘉斌,卜叶强,徐雨晴,王宏涛.一种高通量制备高熵合金的方法.专利申请号:201811440747.3,专利申请日:2018.11.29.浙江大学. 刘嘉斌,卜叶强,陈陈旭,徐雨晴,王宏涛.一种原位观察低塑性高强度金属马氏体相变的方法.专利申请号:201710654259.1,专利申请日:2017.08.03.浙江大学. 王宏涛,张奕志,刘嘉斌,方攸同.能对样品进行360°旋转的透射电镜样品杆.专利申请号:201611109132.3,专利申请日:2016.12.06.浙江大学. 王宏涛,刘嘉斌.透射电子显微镜原位环境双倾样品杆.专利申请号:201510090402.X,专利申请日:2015.02.28.浙江大学. 王宏涛,刘嘉斌.透射电子显微镜用压电驱动式双轴倾转样品杆.专利申请号:201510090691.3,专利申请日:2015.02.28.浙江大学. 王宏涛,刘嘉斌.透射电子显微镜原位高低频疲劳双倾样品杆.专利申请号:201510090268.3,专利申请日:2015.02.28.浙江大学. 王宏涛,张奕志,刘嘉斌,方攸同.一种三维重构所用的透射电镜样品杆.专利申请号:201611109130.4,专利申请日:2016.12.06.浙江大学. 王宏涛,唐晓雅,张奕志.高温原位样品杆.专利申请号:201710791837.6,专利申请日:2017.09.05.浙江大学. 王宏涛,张奕志.用于透射电镜样品杆的纳米定位器.专利申请号:201710791800.3,专利申请日:2017.09.05.浙江大学. 柔性孪生机器人irobot-word.jpg——中国阿凡达计划 在开放、动态、随机、非结构化环境中完成复杂作业任务,对机器人的通用智能及鲁棒性提出了巨大挑战。柔性孪生机器人是为了克服机器人弱智能现状而提出的人机协同增强系统,通过柔性电子技术协同机器人与人之间的运动和感受,实现人体浸入式操纵体验,提升机器人作业鲁棒性,推动机器人从实验室研究向工程应用转化,变革机器人的使用方式,辐射国防安全、医疗康复等领域。 柔性孪生机器人是狭义智能向通用智能发展必经之道,为其奠定重要基础。鉴于其重要性,浙江大学交叉力学中心首先提出并倡导“中国阿凡达计划”,指明发展纲领。 irobot-word.jpg应用层 运动平台——动力机器人(X-Robot Project) 超越人类自身或者自然界四足动物运动能力是动力机器人领域孜孜以求的梦想。轮子的发明,极大扩展了人类陆地活动范围,但难于适应复杂地形。机器人不受限于“基因”的约束,它的形式仅取决于我们的想象力,例如下图交叉力学中心“深度动力”实验室发展的轮腿机器人。同时,机器人无需生命维持系统,可以到达人类自身无法企及的领域。因此,作为人类自身的延伸,“机械孪生”机器人的发展尤为重要。 Deep Dynamics Lab发展的运动机器人平台:(左)轮足机器人(中)四足动力机器狗(右)正在开展的双足机器人(尚未对外发布,暂用iRobot电影海报图片) 执行器——智能灵巧仿生机械手(X-Hand Project) 人手是人类使用工具以来百万年自然演化的杰作,是人体最为复杂的器官之一。根据Cortical homunculus大脑功能分区,在控制全身的运动/感觉活动中,大脑分配给人手的资源超过其总体的1/3。通过复杂的机构及精密的反馈系统,具有极高自由的的人手可实现运动和力的精确控制,并具有优异的可控非线性阻抗动力学特性,能够非常灵巧的进行抓取和操纵,从而使其在非结构化环境执行复杂精细的任务成为可能,例如人手能够进行操作各种复杂的乐器、使用工具以及胜任日常生活所必须的任务。因此实现人手功能的智能仿生机械手研究代表了人体运动功能重建领域的最高挑战。 交叉力学中心“深度动力”实验室发展的智能灵巧仿生机械手(下图右上)具有高的集成度与自由度,其单位质量力输出可与人手媲美。目前与求是高等研究院合作发展新型脑机接口,通过人脑控制其运动,实现人手功能。该项目是浙江大学“双脑计划”的重要组成部分。 Deep Dynamics Lab发展的第二代智能灵巧仿生机械手(右上X-Hand II)与国际著名机械手比较 irobot-word.jpg数字层 柔性数字孪生(FDT,Flexible Digital Twins) 数字层是“人-机”混合增强的粘结层,是“人脑”的数字实现,即“数字脑”,它不仅仅是人脑决策的转移,而且代表了全新的控制理念。例如,经典的控制方法难以处理高维、非线性、非连续以及复杂模型问题,难以对动力机器人进行实时控制。然而自然界即使简单生物发展的“脑神经”已经展现出无与伦比的高超控制技巧。下图为交叉力学中心“深度动力”实验室发展的深度动力控制算法架构,实现了对于硬件能力的充分挖掘。 irobot-word.jpg操纵层 柔性增强现实(FAR,Flexible Argumented Reality) 大脑中有许多神经元,神经元间缔结的关系构成了神经网络,信号在神经元上的主要是通过电脉冲信号(动作电位)进行传递。某种程度上,动作电位反映着我们的“想法”。解析大脑的感知与反馈,不仅推动神经科学的发展,也为柔性孪生机器人控制提供参考方案。 目前与求是高等研究院合作发展新型脑机接口,通过人脑控制其运动,实现人手功能。该项目是浙江大学“双脑计划”的重要组成部分。 X-Hand Project 四维透射电子显微镜 浙江大学交叉力学中心“XNano”实验室研发了中国首台四维透射电子显微镜设备 X-Nano Project 追求对于自然物质极限认知推动着科学技术的发展,从光学显微镜到电子显微镜,人类在这一方向从来没有停下脚步,目前球差矫正透射电镜的极致分辨率达到40 pm(约为铁原子直径的1/3)。透射电镜多尺度(10-10 m–10-4 m)、多视角(明、暗场像,电子衍射,化学成分)的实验分析能力,基于透射电子显微镜的原位微纳米力学实验仪器,将为研究固体材料内部缺陷形成、演化及其对力学行为影响这一力学与材料交叉的关键科学问题提供了重要实验平台。中心前期将三维纳米操纵与360度旋转耦合,研制了三维重构样品台,为实现原子级三维重构提供重要设备支撑。在此基础上,进一步发展三维重构与原位光学、力学和电学等耦合,创新4D-TEM概念及设备,无疑将对深化人类对于物质结构的认识提供重要支撑。 目前该设备在香港城市大学、燕山大学、中科院物理所等单位获得应用,相关论文发表在Nat.Comm.,Mater.Today Nano等期刊上。 纳米颗粒的四维表征(截图) 香港城市大学捐赠证书 杨卫院士将中心设备捐赠香港城市大学副校长吕坚教授 南洋理工大学校长Suresh院士在“国际先进技术材料大会”上介绍中心XNano设备(2019) (新闻链接:http://www.xmech.zju.edu.cn/Xinwen_view_id_522.html) 杨卫院士在“粤港澳物理学2019年年会”上介绍中心XNano设备(2019) 基于深度学习的跨尺度计算 X-Scale Project 串行计算方法是跨尺度计算领域的主流方法,不同尺度特征物理量的描述方法不同,层级交叉界面物理量精确传递是制约多尺度计算方法发展的瓶颈。我们提出基于深度学习的层级交叉跨尺度计算方法,期望通过方法同源和数据同源的设计思想以消除不同方法之间的壁垒,以应对多尺度问题的挑战。 基于深度学习的层级交叉跨尺度计算方法架构 专利申请 王宏涛,刘嘉斌.透射电子显微镜用压电驱动式双轴倾转样品杆.专利申请号:201510090691.3,专利申请日:2015.02.28,专利授权日:2018.06.05.浙江大学. 王宏涛,刘嘉斌.透射电子显微镜原位环境双倾样品杆.专利申请号:201510090402.X,专利申请日:2015.02.28,专利授权日:2019.01.01.浙江大学. 王宏涛,刘嘉斌.透射电子显微镜原位高低频疲劳双倾样品杆,专利申请号:201510090268.3,专利申请日:2015.02.28,专利授权日:2018.06.15.浙江大学. 王宏涛,刘嘉斌,方攸同.一种高铁接触线用的铜合金及其制备方法,专利申请号:201710218266.7,专利申请日:2017.04.05,专利授权日:2018.11.22通知授权.浙江大学. 王宏涛,刘嘉斌,方攸同.一种用于高铁接触线的铜合金及其制备方法,专利申请号:201710217631.2,专利申请日:2017.04.05,专利授权日:2019.1.10通知授权.浙江大学. 王宏涛,刘嘉斌,方攸同.一种高强高韧全奥氏体不锈钢的加工方法.专利申请号201610436538.6,专利申请日:2016.06.17,专利授权日:2018.05.04,浙江大学. 刘嘉斌,王宏涛,方攸同.一种高强高韧不锈钢及其加工方法.专利申请号:201610437107.1,专利申请日:2016.06.17,专利授权日:2017.12.15.浙江大学. 刘嘉斌,侯梦莲,王宏涛,徐雨晴,方攸同,孟亮,王立天,田雨.作为时速400公里以上高速铁路接触线材料应用的超强高导铜合金.专利申请号:201610319172.4,专利申请日:2016.05.16,专利授权日:2018.03.09.浙江大学. 刘嘉斌,侯梦莲,王宏涛,徐雨晴,方攸同,孟亮,王立天,田雨.高强高导铜合金及其作为时速400公里以上高速铁路接触线材料的应用.专利申请号:201610321078.2,专利申请日:2016.05.16,专利授权日:2017.10.13..浙江大学. 刘嘉斌,卜叶强,陈陈旭,王宏涛.一种制备密排六方结构的高熵合金的方法.专利申请号:201710329341.7,专利申请日:2017.05.11,专利授权日2018.09.11.浙江大学. 刘嘉斌,陈陈旭,孟亮,曾跃武,王宏涛.用于透射电镜的原位拉伸试样的制备方法.专利申请号:201410172126.7,专利申请日:2014.04.28,专利授权日:2016.08.31.浙江大学. 刘嘉斌,卜叶强,徐雨晴,王宏涛.一种高通量制备高熵合金的方法.专利申请号:201811440747.3,专利申请日:2018.11.29.浙江大学. 刘嘉斌,卜叶强,陈陈旭,徐雨晴,王宏涛.一种原位观察低塑性高强度金属马氏体相变的方法.专利申请号:201710654259.1,专利申请日:2017.08.03.浙江大学. 王宏涛,张奕志,刘嘉斌,方攸同.能对样品进行360°旋转的透射电镜样品杆.专利申请号:201611109132.3,专利申请日:2016.12.06.浙江大学. 王宏涛,刘嘉斌.透射电子显微镜原位环境双倾样品杆.专利申请号:201510090402.X,专利申请日:2015.02.28.浙江大学. 王宏涛,刘嘉斌.透射电子显微镜用压电驱动式双轴倾转样品杆.专利申请号:201510090691.3,专利申请日:2015.02.28.浙江大学. 王宏涛,刘嘉斌.透射电子显微镜原位高低频疲劳双倾样品杆.专利申请号:201510090268.3,专利申请日:2015.02.28.浙江大学. 王宏涛,张奕志,刘嘉斌,方攸同.一种三维重构所用的透射电镜样品杆.专利申请号:201611109130.4,专利申请日:2016.12.06.浙江大学. 王宏涛,唐晓雅,张奕志.高温原位样品杆.专利申请号:201710791837.6,专利申请日:2017.09.05.浙江大学. 王宏涛,张奕志.用于透射电镜样品杆的纳米定位器.专利申请号:201710791800.3,专利申请日:2017.09.05.浙江大学. 教学与课程 本科教学 1.本科生《Hands-on Deep Dynamical Robots》核心课程 Course website:http://www.xmech.zju.edu.cn/Jiaoxue_view_id_517.html Course PPT and supplementary readings can be downloaded from the above website. 本课程不同于任何机器人课程。首先,我们强调“玩”,在玩“玩具”(只不过更大、更智能)的过程中深刻理解动力机器人的设计、制造以及控制;其次,课程结束同学们将亲手完成具有高机动性能的小型机器狗(10kg重,70cm高)组装,动力性能优于目前国内所有你们见到的电驱机器狗。尤其本课程横跨力学、计算机、电气、控制以及人工智能等若干一级学科,是新工科“汇聚型”课程典范。 本课程曾为北京大学工学院机器人专业学生讲授,获得一致好评。 2.本科生《材料力学(甲)》核心课程 Course website:http://www.xmech.zju.edu.cn/Jiaoxue_view_id_519.html Lecture notes and videos can be downloaded from the above website. 3.本科生教学:学生评价近三年全部为“优秀” 4.2019级航空航天学院本科新生班主任 5.竺可桢学院专业导师 Robots developed in the course! Course description The course introduces the design and control principles of dynamical robots,as exampled by the MIT mini Cheetah quadruped robot,a fabulous dynamical under-actuated mechanical system.We will introduce both theories and practices,focusing on how to project theories into designs and how to dig the fundamental principles underlying practices.'Hands-on'is the most efficient way in learning,especially if you can learn while playing. Topics include forward and inverse kinematics,robot simulation in a python-based physical engine,nonlinear control and modern control theory,deep-mimc dynamics of robotic control with motion capture,actuator design and motor control.Hopefully,we can keep you in touch with most advanced technology development,such as AI.You can design and develop robots that are more dynamic and more agile than the current state-of-the-art later on. Goal (1)Hand on dynamical robots; (2)Understand the design,modelling,simulation,assemble and control; (3)Keep in touch with most advanced technology development,such as AI; (4)Develop the tools necessary to design robots that are more dynamic and more agile than the current state-of-the-art. References Fabulous online courses Practical MIT course:How to Make Something that Makes(almost)Anything Website:http://fab.cba.mit.edu/classes/865.18/introduction/index.html It has all tools for building robots. Theoretical MIT course:Underactuated Robotics Website:http://underactuated.csail.mit.edu/underactuated.html Online video:https://www.youtube.com/channel/UChfUOAhz7ynELF-s_1LPpWg Control (1)Course:Control bootcamp by Steve Brunton from Washington University Online video:https://www.youtube.com/watch?v=Pi7l8mMjYVE&list=PLMrJAkhIeNNR20Mz-VpzgfQs5zrYi085m (2)Course:Reinforcement learning by D.Silver Online videos:http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html (3)Machine learning by Andrew Ng Online videos:https://www.coursera.org/learn/machine-learning Online free textbooks Robot: (1)Russ Tedrake,Underactuated Robotics--Algorithms for Walking,Running,Swimming,Flying,and Manipulation http://underactuated.csail.mit.edu/underactuated.html (2)Marc Raibert,Legged Robots That Balance,The MIT Press(not free) https://mitpress.mit.edu/books/legged-robots-balance (3)开源机器人学学习指南 https://github.com/qqfly/how-to-learn-robotics/tree/backup/all-in-one Reinforcement learning: Sutton,Richard S.,and Andrew G.Barto.Reinforcement Learning:An Introduction.Cambridge,MA:MIT Press,1998.ISBN:9780262193986. http://incompleteideas.net/book/the-book-2nd.html Control: Karl J.Astrom and Richard M.Murray,Feedback Systems:An Introduction for Scientists and Engineers https://www.cds.caltech.edu/~murray/amwiki/index.php/Second_Edition Neural network and deep learning: Michael Nielsen,Neural Networks and Deep Learning http://neuralnetworksanddeeplearning.com/chap1.html 材料力学(甲) Course description Mechanics of Materials(A)is divided into two independent courses named Mechanics of Materials(A)I and Mechanics of Materials(A)II.The main topics in course#I include introduction,tension and compression of bars,torsion of shafts,bending of beams,stress and strain analysis,strength theory.While in course#II,the main topics covers composite deformation,energy method,statically indeterminate structure,dynamic load,alternative stress,stability of columns,curved bar,and thick-walled cylinders and rotational round plates.The purpose of the two courses is to develop and provide the students with the theory of the fundamental principles of mechanics of materials.Students will learn all the tools to analyze beams,columns,frames for normal,shear and torsion stresses and to solve deflection problems in preparation for design of such structural components.Through this course,students should possess the ability to analyze and solve problems in engineering bearing structures based on the concept of strength,stiffness and stability of structural members and materials behavior.This course also serves as a pre-requisite for advanced courses of solid mechanics. 本课程课程 2019 Summer Deep Dynamic Robot Practice Course Aug.5-Aug.16,2019 Provided by Center for X-Mechanics Summer Deep Dynamic Robot Practice Course圆满结束,航空航天学院“新闻报道”了本次课程。 毕业生去向 聂安民燕山大学教授 李倩倩上海大学副教授(青年东方学者) 周武密歇根州立大学博士 冯琼中国电力科学研究院研究员 王鹏上海大学讲师 董策舟海通证券注册会计师 陈陈旭网易游戏策划 刘德重沈阳鼓风机集团工程师 程昱上海华为技术有限公司工程师 赵思远科咨美电气有限公司工程师 陈陈旭网易游戏策划 宋也男华东师范大学副教授 方晓阳浙江大学交叉力学中心 曹可香港城市大学博士研究生 赵东晨杭州热联策略分析员 尹少骞河南师范大学副教授 张乐号博世集团 周垂颖大华集团工程师 应林炜上海交大研/海宁公务员 宋来运哈尔滨工业大学博士研究生 殷琨四川大学研究生 梅乐拼多多公司 王韫璐上海大众 汪洋华为集团 徐雨晴微软公司 侯梦莲申银万国期货有限公司 加入我们 中心招收博士后、博士、硕士研究生及本科SRTP学生,提供具有竞争力的薪酬及平台,助力梦想实现。 X-Mechanics招收方向 üX-Nano project in extremely hard materials Developing new tools in order to approach material strength limit üX-Scale project in computer simulation Developing new AI algorithm in order to untangle cross-scale problems üX-Robot project Building dynamical robots and developing control algorithm based on machine learning üX-Hand project Developing wearable and human friendly exoskeleton robot for welfare of the disabled (The last two are sub-projects of the I-Robot project) 实验室 经过六年拼搏,课题组从零到一建设了X-Nano实验室和Deep Dynamic实验室,以及自己的加工中心和相应的工程师队伍,也由“交叉力学实验室”升级为“交叉力学中心”,这一切源于我们心中的梦想以及对于自我的不断挑战,我们竟然发现没有什么做不成的事情。我们热切渴望同样心怀梦想的你加入我们。 我们的梦想 加入我们 中心概况 现代力学研究最显著的特点是与其他学科的交叉越来越广泛和深入,所涉及对象的复杂性越来越突出,出现了一系列处于科学前沿的新问题和新领域。力学体系正孕育着重大变革,要把握这一时机,必须发挥力学学科的基础作用,与各学科交叉融合,滋生新的学科增长点。由杨卫院士牵头创建“交叉力学研究中心”(Center of X-Mechanics),以把握变革机遇,提前布局,汇聚研究,将不仅为推动浙江大学力学学科发展,也为提升力学学科国际影响力和浙江大学综合研究实力提供重要助力。浙江大学学科门类齐全,力学、物理、机械、土木、材料、化学等相关学科具有强大的科研力量,为力学与多学科交叉创新提供了有利的条件。中心将以前沿牵引汇聚方向,以基础优势实现交叉驱动;以学术大师汇聚计划,推动双向交流合作,引进并培养一流人才,构建国际学术网络。 交叉力学以力学为牵引,实现各学科交叉融合,孕育新的学科增长点,研究方向包括力学与人工智能交叉、力学与材料基因交叉以及力学与电子信息交叉,形成的基础研究,工程应用和前沿技术三大特色。目前,多学科交叉融合协同创新已经成为共识。依托浙江大学多学科交叉的优势,成立交叉力学中心,将进一步汇聚相关领域的研究人员,促进和加强国际交流与合作,在短期内使中心发展成为力学领域“国内引领、国际知名”的创新研究、高端人才培养及重大项目培育基地。 中心骨干成员包括国家杰出青年基金获得者2人,浙大求是特聘教授,浙江省杰青以及教授、副教授共10人。中心拟最终成为具有15个左右专职教授或研究员、10个左右博士后人员、20个左右博士研究生以及30个左右硕士研究生的高水平实体研究机构。 中心学术委员会委员有包括中国科学院院士(5人)、中国工程院院士(1人)在内的著名学者10余人,具体详见交叉力学中心网页。 中心链接:www.xmech.zju.edu.cn 杨卫主任致辞 交叉力学——无垠的疆域 宇宙之大,粒子之微,力无所不在。力学是一门经典学科,在纵深方向的开拓性和横向维度的包容性,由内而外焕发勃勃生机。现代力学交叉连接工程与科学,并不断开拓新的视界,润物无声的融入到物理、生命甚至社会科学中。这一特点可概括为“交叉力学”,或者形象表示为”X-Mechanics”,”X”代表了交叉、扩展、融合以及焦点,其内涵体现出层级交叉、智质交叉、刚柔交叉以及介质交叉四方面特点。 交叉力学应用力学的原理和方法,以新的视角阐述自然及社会。它从不界定自己的边界,永远进取;它大道至简,从而变化万千;它自我驱动,不断学习,演化出新的学科方向,例如信息动力学,生物力学等;它在交叉融合的过程中,不断丰富了对力学的认知,并建立自信。因此,我们相信交叉力学将在更宽广的领域引发力学的复兴,繁荣中国的基础研究。 X-Mechanics–An endless frontier In contrast to the conventional wisdom that mechanics is a relatively mature subject,two features of mechanics revitalize its appearance and internal core.The first feature comes from the deep-mind nature of mechanics,it endlessly pursues the mechanisms for interactions of all kinds.The second feature lies in the inclusiveness and interlinking nature of mechanics.As a bridge between science and engineering,mechanics marches to connect all gaps between fundamentals and applications.It serves as a basic tool of engineering sciences and endeavors to explore the new horizon of mechanics in an extended or crossed form,toward physical sciences,life sciences,and even social sciences.We name this new phase for the development of mechanics X-Mechanics.“X”refers to as“cross”and/or“extended”.The contents of four“crosses”include cross media,cross scales,cross compliances,and cross cyber/physical spaces.These crossing investigations will touch upon the contents,the methodology,the behaviors,and the functions underlying X-Mechanics. X-Mechanics is a new way to interpret our world by mechanics principles and methodologies.It is border-less,our view on its domain of applications cannot be restricted.It is end-less,one cannot foresee its horizon.It converges around the core of mechanics yet diversifies to different disciplines.Four features of X-Mechanics,self-sensing,self-learning,self-powering and self-ascending,nourish it forever young.X-Mechanics,as always attempting into new lands,continuously searches the new trophies,such as mechanochemistry,bio-mechanics and information dynamics.X-Mechanics is built upon the knowledge,skills and laws from each encounter with the other disciplines,never stops its conquest.X-Mechanics possesses a strong and vital mechanics core,never shy of its tool box and self-esteem.X-Mechanics looks at the big picture and the critical analytics on each task on its path,always ascents to a higher level,and always directs our attention top-down.With these positive features,the rejuvenation of mechanics is expected,as the booming of basic researches in China. 中心研究方向 力学与人工智能交叉 深度动力机器人研究(阿凡达计划) 仿人机器人是连接力学与人工智能的纽带,具有灵巧操纵和灵活运动的双足机器人更为人工智能研究提供重要平台,仿人机器人甚至将为人类自我认识提供新的窗口。目前这一领域从顶层设计理念到底层硬件驱动和控制方法均尚待探索。我们提出设计仿人、硬件仿生以及深度神经网络控制(Deep Manipulation,Deep Dynamics,Deep Perception)的研究思路,设计高效高功率密度的仿肌肉形电极驱动系统,发展基于人体姿态的灵巧操纵和灵活运动网络系统,结合柔性电子实现深度感知,引领未来机器人的发展。 数据驱动的计算方法研究 串行计算方法是跨尺度计算领域的主流方法,不同尺度特征物理量的描述方法不同,层级交叉界面物理量精确传递是制约多尺度计算方法发展的瓶颈。我们提出基于深度学习的层级交叉跨尺度计算方法,期望通过方法同源和数据同源的设计思想以消除不同方法之间的壁垒,以应对多尺度问题的挑战。 力学与材料基因交叉 四维透射电镜实验平台研究 追求对于自然物质极限认知推动着科学技术的发展,从光学显微镜到电子显微镜,人类在这一方向从来没有停下脚步,目前球差矫正透射电镜的极致分辨率达到40 pm(约为铁原子直径的1/3)。透射电镜多尺度(10-10 m–10-4m)、多视角(明、暗场像,电子衍射,化学成分)的实验分析能力,基于透射电子显微镜的原位微纳米力学实验仪器,将为研究固体材料内部缺陷形成、演化及其对力学行为影响这一力学与材料交叉的关键科学问题提供了重要实验平台。中心前期将三维纳米操纵与360度旋转耦合,研制了三维重构样品台,为实现原子级三维重构提供重要设备支撑。在此基础上,进一步发展三维重构与原位光学、力学和电学等耦合,创新4D-TEM概念及设备。 力学与电子信息交叉 柔性电子-机器人智能界面研究(阿凡达计划) 柔性电子科学与技术可描述为将功能性的有机/无机材料电子器件制作在柔性高分子材料或薄金属基板上的新兴电子技术。柔性电子独特的柔性和延展性可以用来设计各种形状、更贴合自然环境,结合电子电路高度集成特性,为多种传感信号融合提供途径,功能有望趋近人体皮肤,为机器人带来除视觉以外更多维度的环境交互能力。 二维材料力学与电子器件研究 二维材料具有许多新颖性质和潜在应用,被认为是后摩尔时代电子器件的关键材料之一,在未来器件小型化、集成化、鲁棒性程度不断提高的大趋势下,二维材料具有广阔的应用前景。中心以二维材料实验科学为中心,着眼于未来多功能硬件与人工智能,围绕制备、力学与器件三个方向展开以下主要研究:(1)二维材料结构与质量的精确控制;(2)二维材料力学的实验方法及测量体系;(3)二维材料层间范德华界面的分析与调控;(4)新型二维力电耦合器件的设计;(5)基于二维材料器件的智能界面、共融与交互。 更多仪器详见中心仪器主页 中心仪器预约链接 1)高分辨率透射电子显微镜 2)高分辨率共焦拉曼光谱仪 3)立式加工中心 4)卧式加工中心 5)激光切割机 6)真空感应熔炼炉 国际合作与学生交流 合作教授 学生交流 中心致力于为同学们提供一流的国际化实践交流机会,目前已有多名同学赴美国、加拿大、澳大利亚、韩国、香港等地进行学习交流,帮助大家增加与国际前沿领域的接触,拓宽交流合作渠道。 新闻链接:http://www.xmech.zju.edu.cn/Keti_view_id_304.html 新闻链接:http://www.xmech.zju.edu.cn/Keti_view_id_319.html 新闻链接:http://www.xmech.zju.edu.cn/Keti_view_id_315.html 2019年8月份张奕志、张学薇等将赴香港参加学术交流。 学术交流 2019年6月23日至28日,国际先进技术材料(ICMAT)系列会议,Subra Suresh教授在会上介绍交叉力学中心金刚石超弹性工作。 2019年5月28日,美国宾夕法尼亚州立大学的张宿林教授受邀作了题为“Mechanical Force in Biology and Medicine”的学术报告。 2019年5月28日,佐治亚理工学院朱廷教授应邀作了题为“Mechanics of Metal Additive Manufacturing”的学术报告。 2017年12月29日,北京高压科学研究中心陈斌教授作题目为“纳米金属:细晶弱化还是强化?”的学术报告。 2017年12月15日,南京航空航天大学郭万林院士受邀作题为“面向空天结构强度和智能化的跨维度与跨尺度力学问题”的学术报告。 2016年10月21日清华大学航空航天学院郑泉水教授访问我中心,并作题为“对力学与研究的认识与实践”的学术报告。 2016年3月25日,中国科学院宁波材料所研究员林正得博士来我所访问,并作了题为“石墨烯的生医与力学传感应用”的学术报告。

研究领域

柔性孪生机器人 深度动力机器人 人工智能 基于深度学习的跨尺度计算 四维透射电子显微镜

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Yunlu Wang,Xiaocheng Zhou,Yanhan Jin,Xuewei Zhang,Zilong Zhang,Yang Wang,Jinglan Liu,Miao Wang,Yang Xia,Pei Zhao*,Zhuhua Zhang,and Hongtao Wang*,Strain-dependent Raman analysis of the G*band in graphene,Physical Review B,Accepted Anmin Nie,Yeqiang Bu,Penghui Li,Yizhi Zhang,Tianye Jin,Jiabin Liu,Zhang Su,Yanbin Wang,Julong He,Zhongyuan Liu,Hongtao Wang*,Yongjun Tian*,and Wei Yang,Approaching diamond's theoretical elasticity and strength limits,Nature Communications,2019,10(1):5533 Zilong Zhang,Xuewei Zhang,Yunlu Wang,Yang Wang,Yang Zhang,Chen Xu,Zhenxing Zou,Zehao Wu,Yang Xia,Pei Zhao*,and Hongtao Wang*,Crack Propagation and Fracture Toughness of Graphene Probed by Raman Spectroscopy,ACS Nano,2019,13(9):10327-10332 K.Wu,F.Chen,Z.T.Ma,B.K.Guo,Y.C.Lyu,P.Wang,H.S.Yang,Q.Q.Li*,Hongtao Wang*,and A.M.Nie*,In situ TEM and half cell investigation of sodium storage in hexagonal FeSe nanoparticles,Chemical Communications,2019,55(39):5611-5614 Hailin Shen,Zhongtao Ma,Bingchao Yang,Bingkun Guo,Yingchun Lyu,Peng Wang,Hangsheng Yang,Qianqian Li*,Hongtao Wang*,Zhongyuan Liu,and Anmin Nie*,Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion batteries,Journal of Power Sources,2019,433 126682, Yeqiang Bu,Zhiming Li,Jiabin Liu*,Hongtao Wang*,Dierk Raabe*,and Wei Yang,Nonbasal Slip Systems Enable a Strong and Ductile Hexagonal-Close-Packed High-Entropy Phase,Physical Review Letters,2019,122(7):075502 Yingjun Liu,Chunyuan Liang,Anran Wei,Yanqiu Jiang,Qishi Tian,Ying Wu,Zhen Xu,Yinfeng Li,Fan Guo,Qiuyan Yang,Weiwei Gao,Hongtao Wang*,and Chao Gao*,Solder-free Electrical Joule Welding of Macroscopic Graphene Assemblies,Materials Today Nano,2018,3 1-8 Zhifeng Lei,Xiongjun Liu,Yuan Wu,Hui Wang,Suihe Jiang,Shudao Wang,Xidong Hui,Yidong Wu,Baptiste Gault,Paraskevas Kontis,Dierk Raabe,Lin Gu,Qinghua Zhang,Houwen Chen,Hongtao Wang,Jiabin Liu,Ke An,Qiaoshi Zeng,Tai-Gang Nieh,and Zhaoping Lu,Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes,Nature,2018,563(7732):546-550 Peng Wang,Shaofeng Xu,Jiabin Liu,Xiaoyan Li,Yujie Wei,Hongtao Wang*,Huajian Gao,and Wei Yang*,Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights,Journal of the Mechanics and Physics of Solids,2017,98 290-308 Peng Wang,Yuan Wu,Jiabin Liu,and Hongtao Wang*,Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys,Extreme Mechanics Letters,2017,17(Supplement C):38-42 Peng Wang,and Hongtao Wang*,Meta-Atom Molecular Dynamics for Studying Material Property Dependent Deformation Mechanisms of Alloys,Journal of Applied Mechanics,2017,84(11):111002-111002-111008 Sichao Du,Wei Lu,Ayaz Ali,Pei Zhao,Khurram Shehzad,Hongwei Guo,Lingling Ma,Xuemei Liu,Xiaodong Pi,Peng Wang,Hehai Fang,Zhen Xu,Chao Gao,Yaping Dan,Pingheng Tan,Hongtao Wang,Cheng-Te Lin,Jianyi Yang,Shurong Dong,Zhiyuan Cheng,Erping Li,Wenyan Yin,Jikui Luo,Bin Yu,Tawfique Hasan,Yang Xu,Weida Hu,and Xiangfeng Duan,A Broadband Fluorographene Photodetector,Advanced Materials,2017,29(22) Ke Cao,Peifeng Li,Yizhi Zhang,Tianwu Chen,Xu Wang,Sulin Zhang,Jiabin Liu*,and Hongtao Wang*,In situ tem investigation on ultrafast reversible lithiation and delithiation cycling of Sn@C yolk-shell nanoparticles as anodes for lithium ion batteries,Nano Energy,2017,40(Supplement C):187-194 Yenan Song,Jianing Zhuang,Meng Song,Shaoqian Yin,Yu Cheng,Xuewei Zhang,Miao Wang,Rong Xiang,Yang Xia,Shigeo Maruyama,Pei Zhao,Feng Ding,and Hongtao Wang,Epitaxial nucleation of CVD bilayer graphene on copper,Nanoscale,2016,8(48):20001-20007 Xiaoyan Li,Yuming Chen,Hongtao Wang,Haimin Yao,Haitao Huang,Yiu-Wing Mai,Ning Hu,and Limin Zhou,Inserting Sn Nanoparticles into the Pores of TiO2-x-C Nanofibers by Lithiation,Advanced Functional Materials,2016,26(3):376-383 Weiqun Li,Ke Cao,Hongtao Wang,Jiabin Liu,Limin Zhou,and Haimin Yao,Carbon coating may expedite the fracture of carbon-coated silicon core-shell nanoparticles during lithiation,Nanoscale,2016,8(9):5254-5259 Yu Cheng,Yenan Song,Dongchen Zhao,Xuewei Zhang,Shaoqian Yin,Peng Wang,Miao Wang,Yang Xia,Shigeo Maruyama,Pei Zhao,and Hongtao Wang,Direct Identification of Multilayer Graphene Stacks on Copper by Optical Microscopy,Chemistry of Materials,2016,28(7):2165-2171 Anmin Nie,Li-Yong Gan,Yingchun Cheng,Qianqian Li,Yifei Yuan,Farzad Mashayek,Hongtao Wang,Robert Klie,Udo Schwingenschlogl,and Reza Shahbazian-Yassar,Twin Boundary-Assisted Lithium Ion Transport,Nano Letters,2015,15(1):610-615 Pei Zhao,Sungjin Kim,Xiao Chen,Erik Einarsson,Miao Wang,Yenan Song,Hongtao Wang,Shohei Chiashi,Rong Xiang,and Shigeo Maruyama,Equilibrium Chemical Vapor Deposition Growth of Bernal-Stacked Bilayer Graphene,ACS Nano,2014,8(11):11631-11638 Yujie Wei,Yongqiang Li,Lianchun Zhu,Yao Liu,Xianqi Lei,Gang Wang,Yanxin Wu,Zhenli Mi,Jiabin Liu,Hongtao Wang,and Huajian Gao,Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins,Nature Communications,2014,5 3580 Anmin Nie,Liyong Gan,Yingchun Cheng,Hasti Asayesh-Ardakani,Qianqian Li,Cezhou Dong,Runzhe Tao,Farzad Mashayek,Hongtao Wang,Udo Schwingenschlgl,Robert F.Klie,and Reza S.Yassar,Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO2 Materials,ACS Nano,2013,7(7):6203-6211 Wenpeng Zhu,Hongtao Wang,and Wei Yang,Orientation-and microstructure-dependent deformation in metal nanowires under bending,Acta Materialia,2012,60(20):7112-7122 Yingbang Yao,QingXiao Wang,Hongtao Wang,Bei Zhang,Chao Zhao,Zhihong Wang,Zhengkui Xu,Ying Wu,Wei Huang,Pei-Yuan Qian,and Xixiang Zhang,Bio-Assembled Nanocomposites in Conch Shells Exhibit Giant Electret Hysteresis,Advanced Materials,2012,1-5 Hongtao Wang,Qingxiao Wang,Yingchun Cheng,Kun Li,Yingbang Yao,Qiang Zhang,Cezhou Dong,Peng Wang,Udo Schwingenschlgl,Wei Yang,and Xixiang Zhang,Doping Monolayer Graphene with Single Atom Substitutions,Nano Letters,2012,12(1):141-144 2019 Yuqing Xu,Yeqiang Bu,Jiabin Liu*,and Hongtao Wang*,In-situ high throughput synthesis of high-entropy alloys,Scripta Materialia,2019,160 44-47 K.Wu,F.Chen,Z.T.Ma,B.K.Guo,Y.C.Lyu,P.Wang,H.S.Yang,Q.Q.Li*,H.T.Wang*,and A.M.Nie*,In situ TEM and half cell investigation of sodium storage in hexagonal FeSe nanoparticles,Chemical Communications,2019,55(39):5611-5614 Hailin Shen,Zhongtao Ma,Bingchao Yang,Bingkun Guo,Yingchun Lyu,Peng Wang,Hangsheng Yang,Qianqian Li*,Hongtao Wang*,Zhongyuan Liu,and Anmin Nie*,Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion batteries,Journal of Power Sources,2019,433 126682 Yeqiang Bu,Zhiming Li,Jiabin Liu*,Hongtao Wang*,Dierk Raabe*,and Wei Yang,Nonbasal Slip Systems Enable a Strong and Ductile Hexagonal-Close-Packed High-Entropy Phase,Physical Review Letters,2019,122(7):075502 Yunlu Wang,Xiaocheng Zhou,Yanhan Jin,Xuewei Zhang,Zilong Zhang,Yang Wang,Jinglan Liu,Miao Wang,Yang Xia,Pei Zhao*,Zhuhua Zhang,and Hongtao Wang*,Strain-dependent Raman analysis of the G*band in graphene,Physical Review B,Accepted Anmin Nie,Yeqiang Bu,Penghui Li,Yizhi Zhang,Tianye Jin,Jiabin Liu,Zhang Su,Yanbin Wang,Julong He,Zhongyuan Liu,Hongtao Wang*,Yongjun Tian*,and Wei Yang,Approaching diamond's theoretical elasticity and strength limits,Nature Communications,2019,10(1):5533 Zilong Zhang,Xuewei Zhang,Yunlu Wang,Yang Wang,Yang Zhang,Chen Xu,Zhenxing Zou,Zehao Wu,Yang Xia,Pei Zhao*,and Hongtao Wang*,Crack Propagation and Fracture Toughness of Graphene Probed by Raman Spectroscopy,ACS Nano,2019,13(9):10327-10332 2018 Yang Wang,Yu Cheng,Yunlu Wang,Shuai Zhang,Xuewei Zhang,Shaoqian Yin,Miao Wang,Yang Xia,Qunyang Li,Pei Zhao,and Hongtao Wang,Oxide-assisted growth of scalable single-crystalline graphene with seamlessly stitched millimeter-sized domains on commercial copper foils,Rsc Advances,2018,8(16):8800-8804 Shaoqian Yin,Xuewei Zhang,Chen Xu,Yang Wang,Yunlu Wang,Peifeng Li,Hongyan Sun,Miao Wang,Yang Xia,Cheng-Te Lin,Pei Zhao,and Hongtao Wang,Chemical vapor deposition growth of scalable monolayer polycrystalline graphene films with millimeter-sized domains,Materials Letters,2018,215 259-262 Yunlu Wang,Yang Wang,Chen Xu,Xuewei Zhang,Le Mei,Miao Wang,Yang Xia,Pei Zhao,and Hongtao Wang,Domain-boundary independency of Raman spectra for strained graphene at strong interfaces,Carbon,2018,134 37-42 Yang Wang,Yu Cheng,Yunlu Wang,Shuai Zhang,Chen Xu,Xuewei Zhang,Miao Wang,Yang Xia,Qunyang Li,Pei Zhao,and Hongtao Wang,Chemical Vapor Deposition Growth of Graphene Domains Across the Cu Grain Boundaries,Nano,2018,13(08):1850088 Peng Wang,Yecheng Shao,Hongtao Wang,and Wei Yang,Accurate interatomic force field for molecular dynamics simulation by hybridizing classical and machine learning potentials,Extreme Mechanics Letters,2018,24 1-5 Yingjun Liu,Chunyuan Liang,Anran Wei,Yanqiu Jiang,Qishi Tian,Ying Wu,Zhen Xu,Yinfeng Li,Fan Guo,Qiuyan Yang,Weiwei Gao,Hongtao Wang,and Chao Gao,Solder-free Electrical Joule Welding of Macroscopic Graphene Assemblies,Materials Today Nano,2018,3 1-8 S.F.Liu,Y.Wu,Hongtao Wang,J.Y.He,J.B.Liu,C.X.Chen,X.J.Liu,H.Wang,and Z.P.Lu,Stacking fault energy of face-centered-cubic high entropy alloys,Intermetallics,2018,93 269-273 Jiabin Liu,Menglian Hou,Huiya Yang,Hongbin Xie,Chao Yang,Jindong Zhang,Qiong Feng,Litian Wang,Liang Meng,and Hongtao Wang,In-situ TEM study of the dynamic interactions between dislocations and precipitates in a Cu-Cr-Zr alloy,Journal of Alloys and Compounds,2018,765 560-568 Zhifeng Lei,Xiongjun Liu,Yuan Wu,Hui Wang,Suihe Jiang,Shudao Wang,Xidong Hui,Yidong Wu,Baptiste Gault,Paraskevas Kontis,Dierk Raabe,Lin Gu,Qinghua Zhang,Houwen Chen,Hongtao Wang,Jiabin Liu,Ke An,Qiaoshi Zeng,Tai-Gang Nieh,and Zhaoping Lu,Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes,Nature,2018,563(7732):546-550 Yeqiang Bu,Shenyou Peng,Shiwei Wu,Yujie Wei,Gang Wang,Jiabin Liu,and Hongtao Wang,Unconventional Deformation Behaviours of Nanoscaled High-Entropy Alloys,Entropy,2018,20(10) 2017 Peng Wang,Shaofeng Xu,Jiabin Liu,Xiaoyan Li,Yujie Wei,Hongtao Wang,Huajian Gao,and Wei Yang,Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights,Journal of the Mechanics and Physics of Solids,2017,98 290-308 Peng Wang,Yuan Wu,Jiabin Liu,and Hongtao Wang,Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys,Extreme Mechanics Letters,2017,17(Supplement C):38-42 Peng Wang,and Hongtao Wang,Meta-Atom Molecular Dynamics for Studying Material Property Dependent Deformation Mechanisms of Alloys,Journal of Applied Mechanics,2017,84(11):111002-111002-111008 S.F.Liu,Y.Wu,Hongtao Wang,J.Y.He,J.B.Liu,C.X.Chen,X.J.Liu,H.Wang,and Z.P.Lu,Stacking fault energy of face-centered-cubic high entropy alloys,Intermetallics,2017 Jiabin Liu,Chenxu Chen,Yuqing Xu,Shiwei Wu,Gang Wang,Hongtao Wang,Youtong Fang,and Liang Meng,Deformation twinning behaviors of the low stacking fault energy high-entropy alloy:An in-situ TEM study,Scripta Materialia,2017,137(Supplement C):9-12 Jiabin Liu,Chenxu Chen,Qiong Feng,Xiaoyang Fang,Hongtao Wang,Feng Liu,Jian Lu,and Dierk Raabe,Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel:An in-situ TEM study,Materials Science and Engineering:A,2017,703(Supplement C):236-243 Yuehua Huang,Quanzhou Yao,Yizhou Qi,Yu Cheng,Hongtao Wang,Qunyang Li,and Yonggang Meng,Wear evolution of monolayer graphene at the macroscale,Carbon,2017,115 600-607 Sichao Du,Wei Lu,Ayaz Ali,Pei Zhao,Khurram Shehzad,Hongwei Guo,Lingling Ma,Xuemei Liu,Xiaodong Pi,Peng Wang,Hehai Fang,Zhen Xu,Chao Gao,Yaping Dan,Pingheng Tan,Hongtao Wang,Cheng-Te Lin,Jianyi Yang,Shurong Dong,Zhiyuan Cheng,Erping Li,Wenyan Yin,Jikui Luo,Bin Yu,Tawfique Hasan,Yang Xu,Weida Hu,and Xiangfeng Duan,A Broadband Fluorographene Photodetector,Advanced Materials,2017,29(22) Sichao Du,Wei Lu,Ayaz Ali,Pei Zhao,Khurram Shehzad,Hongwei Guo,Lingling Ma,Xuemei Liu,Xiaodong Pi,Peng Wang,Hehai Fang,Zhen Xu,Chao Gao,Yaping Dan,Pingheng Tan,Hongtao Wang,Cheng-Te Lin,Jianyi Yang,Shurong Dong,Zhiyuan Cheng,Erping Li,Wenyan Yin,Jikui Luo,Bin Yu,Tawfique Hasan,Yang Xu,Weida Hu,and Xiangfeng Duan,Photodetectors:A Broadband Fluorographene Photodetector(Adv.Mater.22/2017),Advanced Materials,2017,29(22) Ke Cao,Peifeng Li,Yizhi Zhang,Tianwu Chen,Xu Wang,Sulin Zhang,Jiabin Liu,and Hongtao Wang,In situ tem investigation on ultrafast reversible lithiation and delithiation cycling of Sn@C yolk-shell nanoparticles as anodes for lithium ion batteries,Nano Energy,2017,40(Supplement C):187-194 2016 Yun Zou,Lehao Zhang,Hongtao Wang,Xin Tong,Milin Zhang,and Zhongwu Zhang,Texture evolution and their effects on the mechanical properties of duplex Mg-Li alloy,Journal of Alloys and Compounds,2016,669 72-78 Pei Zhao,Yu Cheng,Dongchen Zhao,Kun Yin,Xuewei Zhang,Meng Song,Shaoqian Yin,Yenan Song,Peng Wang,Miao Wang,Yang Xia,and Hongtao Wang,The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals,Nanoscale,2016,8(14):7646-7653 Lehao Zhang,Yun Zou,Hongtao Wang,Liang Meng,Jiabin Liu,and Zhongwu Zhang,Surface nanocrystallization of Mg-3 wt.%Li-6 wt.%Al alloy by surface mechanical attrition treatment,Materials Characterization,2016,120 124-128 Jin Yao,Tao Suo,Shuangyin Zhang,Feng Zhao,Hongtao Wang,Jiabin Liu,Yuzeng Chen,and Yulong Li,Influence of heat-treatment on the dynamic behavior of 3D laser-deposited Ti-6Al-4V alloy,Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2016,677 153-162 Zheng-Long Xu,Ke Cao,Sara Abouali,Mohammad Akbari Garakani,Jiaqiang Huang,Jian-Qiu Huang,Elham Kamali Heidari,Hongtao Wang,and Jang-Kyo Kim,Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy,Energy Storage Materials,2016,3 45-54 Yenan Song,Jianing Zhuang,Meng Song,Shaoqian Yin,Yu Cheng,Xuewei Zhang,Miao Wang,Rong Xiang,Yang Xia,Shigeo Maruyama,Pei Zhao,Feng Ding,and Hongtao Wang,Epitaxial nucleation of CVD bilayer graphene on copper,Nanoscale,2016,8(48):20001-20007 Yenan Song,Jianing Zhuang,Meng Song,Shaoqian Yin,Yu Cheng,Xuewei Zhang,Miao Wang,Rong Xiang,Yang Xia,Shigeo Maruyama,Pei Zhao,Feng Ding,and Hongtao Wang,Epitaxial nucleation of CVD bilayer graphene on copper,Nanoscale,2016, Zhiwei Ma,Jiabin Liu,Gang Wang,Hongtao Wang,Yujie Wei,and Huajian Gao,Strength gradient enhances fatigue resistance of steels,Scientific Reports,2016,6 Jiabin Liu,Yongbin Jin,Xiaoyang Fang,Chenxu Chen,Qiong Feng,Xiaowei Liu,Yuzeng Chen,Tao Suo,Feng Zhao,Tianlin Huang,Hongtao Wang,Xi Wang,Youtong Fang,Yujie Wei,Liang Meng,Jian Lu,and Wei Yang,Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels,Scientific Reports,2016,6 Xiaoyan Li,Yuming Chen,Hongtao Wang,Haimin Yao,Haitao Huang,Yiu-Wing Mai,Ning Hu,and Limin Zhou,Inserting Sn Nanoparticles into the Pores of TiO2-x-C Nanofibers by Lithiation,Advanced Functional Materials,2016,26(3):376-383 Weiqun Li,Ke Cao,Hongtao Wang,Jiabin Liu,Limin Zhou,and Haimin Yao,Carbon coating may expedite the fracture of carbon-coated silicon core-shell nanoparticles during lithiation,Nanoscale,2016,8(9):5254-5259 J.G.Li,T.Suo,C.X.Huang,Y.L.Li,H.T.Wang,and J.B.Liu,Adiabatic shear localization in nanostructured face centered cubic metals under uniaxial compression,Mater.Des.,2016,105 262-267 Jimin Fu,Chong He,Biao Xia,Yan Li,Qiong Feng,Qifang Yin,Xinghua Shi,Xue Feng,Hongtao Wang,and Haimin Yao,c-axis preferential orientation of hydroxyapatite accounts for the high wear resistance of the teeth of black carp(Mylopharyngodon piceus),Scientific Reports,2016,6 B.Dang,X.Zhang,Y.Z.Chen,C.X.Chen,Hongtao Wang,and F.Liu,Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy,Scientific Reports,2016,6 Yu Cheng,Yenan Song,Dongchen Zhao,Xuewei Zhang,Shaoqian Yin,Peng Wang,Miao Wang,Yang Xia,Shigeo Maruyama,Pei Zhao,and Hongtao Wang,Direct Identification of Multilayer Graphene Stacks on Copper by Optical Microscopy,Chemistry of Materials,2016,28(7):2165-2171 Aiying Chen,Jiabin Liu,Hongtao Wang,Jian Lu,and Y.Morris Wang,Gradient twinned 304 stainless steels for high strength and high ductility,Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2016,667 179-188 Ke Cao,Min Kuang,Yuxin Zhang,Jiabin Liu,Hongtao Wang,and Liang Meng,In-situ TEM on the coalescence of birnessite manganese dioxides nanosheets during lithiation process,Materials Research Bulletin,2016,79 36-40 2015 Siyuan Zhao,Wenpeng Zhu,Peng Wang,and Hongtao Wang,Rutherford Scattering Model Implemented in Molecular Dynamics Simulations for Electron Irradiation Effects,Journal of Computational and Theoretical Nanoscience,2015,12(8):1606-1609 Lihui Zhang,Qiong Feng,Anmin Nie,Jien Ma,Hongtao Wang,Jiabin Liu,and Youtong Fang,In situ study on stability of copper oxide nanomaterials by e-beam irradiation,Materials Letters,2015,156 134-137 Zheng-Long Xu,Biao Zhang,Yang Gang,Ke Cao,Mohammad Akbari Garakani,Sara Abouali,Jiaqiang Huang,Jian-Qiu Huang,Elham Kamali Heidari,Hongtao Wang,and Jang-Kyo Kim,In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes,Energy Storage Materials,2015,1 25-34 Xinyong Tao,Kuan Wang,Hongtao Wang,Qianqian Li,Yang Xia,Hui Huang,Yongping Gan,Chu Liang,and Wenkui Zhang,Controllable synthesis and in situ TEM study of lithiation mechanism of high performance NaV3O8 cathodes,Journal of Materials Chemistry A,2015,3(6):3044-3050 Yenan Song,Dingyi Pan,Yu Cheng,Peng Wang,Pei Zhao,and Hongtao Wang,Growth of large graphene single crystal inside a restricted chamber by chemical vapor deposition,Carbon,2015,95 1027-1032 X.H.Shi,Y.Z.Chen,X.Y.Ma,H.T.Wang,and F.Liu,Microstructural evolution of nanocrystalline Fe–Zr alloys upon annealing treatment,Materials Characterization,2015,103 58-64 Anmin Nie,Li-Yong Gan,Yingchun Cheng,Qianqian Li,Yifei Yuan,Farzad Mashayek,Hongtao Wang,Robert Klie,Udo Schwingenschlogl,and Reza Shahbazian-Yassar,Twin Boundary-Assisted Lithium Ion Transport,Nano Letters,2015,15(1):610-615 Minmin Mao,Anmin Nie,Jiabin Liu,Hongtao Wang,Scott X.Mao,Qingxiao Wang,Kun Li,and Xi-Xiang Zhang,Atomic resolution observation of conversion-type anode RuO2 during the first electrochemical lithiation,Nanotechnology,2015,26(12) Qiong Feng,Lunan Song,Yuewu Zeng,Youtong Fang,Liang Meng,Jiabin Liu,and Hongtao Wang,Evolution of FCC/BCC interface and its effect on the strengthening of severe drawn Cu-3 wt.%Cr,Journal of Alloys and Compounds,2015,640 45-50 2014 刘德重,冯琼,张升才,耿黎明,and王宏涛,船用10Ni5CrMoV高强钢的疲劳性能,材料科学与工程学报,2014,32(2):227-233 Pei Zhao,Sungjin Kim,Xiao Chen,Erik Einarsson,Miao Wang,Yenan Song,Hongtao Wang,Shohei Chiashi,Rong Xiang,and Shigeo Maruyama,Equilibrium Chemical Vapor Deposition Growth of Bernal-Stacked Bilayer Graphene,ACS Nano,2014,8(11):11631-11638 Wei Yang,and Hongtao Wang,Nanomechanics of Graphene and Nanocrystals,Procedia IUTAM,2014,10 273-284 Yujie Wei,Yongqiang Li,Lianchun Zhu,Yao Liu,Xianqi Lei,Gang Wang,Yanxin Wu,Zhenli Mi,Jiabin Liu,Hongtao Wang,and Huajian Gao,Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins,Nature Communications,2014,5 3580 Peng Wang,Hongtao Wang,and Wei Yang,Anomalous high adsorption energy of H2O on fluorinated graphenes:a first principles study,Physical Chemistry Chemical Physics,2014,16(38):20464-20470 Peng Wang,Hongtao Wang,and Wei Yang,Two-dimensional ferromagnetic iron crystals constrained by graphene edges:a first principles study,RSC Advances,2014,4(33):17008-17014 Hong-Bo Wang,Fei Ma,Qian-Qian Li,Miao Wang,Jia-Bin Liu,Meng-Long Sun,Da-Yan Ma,Hong-Tao Wang,and Ke-Wei Xu,Dynamic morphology instability in epitaxial ZnO/AZO(aluminum-doped ZnO)core–shell nanowires,Journal of Materials Science,2014,49(17):6020-6028 Xiaofeng She,and Hongtao Wang,Thermal Stability of ALD Lanthanum Aluminate Thin Films on Si(100),Journal of Materials Science&Technology,2014,30(4):347-352 Dezhong Liu,Qiong Feng,Shengcai Zhang,Liming Geng,and Hongtao Wang,Fatigue Performance of Marine High Strength Steel 10Ni5CrMoV,Journal of Materials Science and Engineering,2014,32(2):227-233 Qianqian Li,Peng Wang,Qiong Feng,Minmin Mao,Jiabin Liu,Hongtao Wang,Scott X.Mao,and Xi-Xiang Zhang,Superior flexibility of a wrinkled carbon shell under electrochemical cycling,Journal of Materials Chemistry A,2014,2(12):4192-4197 Qianqian Li,Peng Wang,Qiong Feng,Minmin Mao,Jiabin Liu,Scott X.Mao,and Hongtao Wang,In Situ TEM on the Reversibility of Nanosized Sn Anodes during the Electrochemical Reaction,Chemistry of Materials,2014,26(14):4102-4108 Qianqian Li,Weiqun Li,Qiong Feng,Peng Wang,Minmin Mao,Jiabin Liu,Limin Zhou,Hongtao Wang,and Haimin Yao,Thickness-dependent fracture of amorphous carbon coating on SnO2 nanowire electrodes,Carbon,2014,80(0):793-798 Hongwei Guo,Yunlong Liu,Yang Xu,Nan Meng,Hongtao Wang,Tawfique Hasan,Xinran Wang,Jikui Luo,and Bin Yu,Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures,Nanotechnology,2014,25(35) 2013 Wu Zhou,Xuzhou Jiang,Peng Wang,and Hongtao Wang,Geometric constraint annealing leading toβ-phase enhancement of electrospun poly(vinylidene fluoride),Fibers Polym,2013,14(1):100-104 Guojun Zhang,Meng Song,Zhenhua Li,Pei Zhao,Zhiqi Gu,Hongtao Wang,Yabo Xu,and Miao Wang,A novel heat dissipation material for high-brightness light-emitting-diode devices,Materials Chemistry and Physics,2013,139(2):741-746 Hongbo Wang,Fei Ma,Qianqian Li,Cezhou Dong,Dayan Ma,Hongtao Wang,and Kewei*Xu,Synthesis and stress relaxation of ZnO/Al-doped ZnO core-shell nanowires,Nanoscale,2013,5(7):2857-2863 Hongtao Wang,Qiong Feng,Yingchun Cheng,Yingbang Yao,Qingxiao Wang,Kun Li,Udo Schwingenschlögl,Xi Xiang Zhang,and Wei Yang,Atomic Bonding between Metal and Graphene,The Journal of Physical Chemistry C,2013,117(9):4632-4638 Anmin Nie,Liyong Gan,Yingchun Cheng,Hasti Asayesh-Ardakani,Qianqian Li,Cezhou Dong,Runzhe Tao,Farzad Mashayek,Hongtao Wang,Udo Schwingenschlögl,Robert F.Klie,and Reza S.*Yassar,Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO2 Materials,ACS Nano,2013,7(7):6203-6211 Chong He,Wu Zhou,Hongtao Wang,San-Qiang Shi,and Haimin Yao,Mechanics of Pharyngeal Teeth of Black Carp(Mylopharyngodon piceus)Crushing Mollusk Shells,Advanced Engineering Materials,2013,15(8):684-690 Cezhou Dong,Wenpeng Zhu,Siyuan Zhao,Peng Wang,Hongtao Wang,and Wei Yang,Evolution of Pt Clusters on Graphene Induced by Electron Irradiation,Journal of Applied Mechanics,2013,80(4):040904-040904 Before 2012 Wenpeng Zhu,Hongtao Wang,and Wei*Yang,Orientation-and microstructure-dependent deformation in metal nanowires under bending,Acta Materialia,2012,60(20):7112-7122 Wenpeng Zhu,Hongtao Wang,and Wei*Yang,Evolution of graphene nanoribbons under low-voltage electron irradiation,Nanoscale,2012,4(15):4555-4561 Yingbang Yao,QingXiao Wang,Hongtao Wang,Bei Zhang,Chao Zhao,Zhihong Wang,Zhengkui Xu,Ying Wu,Wei Huang,Pei-Yuan Qian,and Xixiang*Zhang,Bio-Assembled Nanocomposites in Conch Shells Exhibit Giant Electret Hysteresis,Advanced Materials,2012,1-5 Peng Wang,Bo Gong,Qiong Feng,and Hongtao*Wang,Simulations of thermal conductance across tilt grain boundaries in graphene,Acta Mechanica Sinica,2012,(6):1528-1531 Hongtao Wang,Qingxiao Wang,Yingchun Cheng,Kun Li,Yingbang Yao,Qiang Zhang,Cezhou Dong,Peng Wang,Udo Schwingenschlgl,Wei Yang,and Xixiang*Zhang,Doping Monolayer Graphene with Single Atom Substitutions,Nano Letters,2012,12(1):141-144 Hongtao Wang,Kun Li,Yingbang Yao,Qingxiao Wang,Yingchun Cheng,U.Schwingenschlögl,Xixiang Zhang,and Wei Yang,Unraveling the Atomic Structure of Ultrafine Iron Clusters,Scientific Reports,2012,2(995):1-5 Hongtao Wang,Kun Li,Yingchun Cheng,Qingxiao Wang,Yingbang Yao,Udo Schwingenschlogl,Xixiang Zhang,and Wei Yang,Interaction between single gold atom and the graphene edge:A study via aberration-corrected transmission electron microscopy,Nanoscale,2012,4(9):2920-2925 Anmin Nie,Jiabin Liu,Peng Wang,Hongtao Wang,Wei Yang,Yuan Gao,Chuan Lin,Yanping Cao,and Zhuo Zhuang,Nanofingers pulled from bulk silver,Scripta Materialia,2012,66(5):247-249 Anmin Nie,Jiabin Liu,Qianqian Li,Yingchun Cheng,Cezhou Dong,Wu Zhou,Peng Wang,Qingxiao Wang,Yang Yang,Yihan Zhu,Yuewu Zeng,and Hongtao Wang,Epitaxial TiO2/SnO2 core-shell heterostructure by atomic layer deposition,Journal of Materials Chemistry,2012,22(21):10665-10671 Qianqian Li,Cezhou Dong,Anmin Nie,Jiabin Liu,Wu Zhou,and Hongtao Wang,Microstructure-Dependent Conformal Atomic Layer Deposition on 3D Nanotopography,Langmuir,2012,28(45):15809-15815 Yingchun Cheng,Hongtao Wang,Z.Y.Zhu,Y.H.Zhu,Y.Han,X.X.Zhang,and U.*Schwingenschlögl,Strain-activated edge reconstruction of graphene nanoribbons,Physical Review B,2012,85(7):073406 Peng Wang,Wu Chou,Anmin Nie,Yang Huang,Haimin Yao,and Hongtao Wang,Molecular dynamics simulation on deformation mechanisms in body-centered-cubic molybdenum nanowires,Journal of Applied Physics,2011,110(9):093521-093528 Hongtao*Wang,Anmin Nie,Jiabin Liu,Peng Wang,Wei Yang,Bangdao Chen,Hongzhong*Liu,and Maosen Fu,In situ TEM study on crack propagation in nanoscale Au thin films,Scripta Materialia,2011 Anmin Nie,and Hongtao Wang,Deformation-mediated phase transformation in gold nano-junction,Materials Letters,2011,65(23-24):3380-3383 Anmin Nie,Jiabin Liu,Cezhou Dong,and Hongtao Wang,Electrical failure behaviors of semiconductor oxide nanowires,Nanotechnology,2011,22(40):405703 Jiabin Liu,Anmin Nie,Cezhou Dong,Peng Wang,Hongtao Wang,Maosen Fu,and Wei Yang,Grain boundary structure dependent fracture in nanocrystalline Au films,Materials Letters,2011,65(17–18):2769-2771 Jiabin Liu,Anmin Nie,Cezhou Dong,Peng Wang,Hongtao Wang,Maosen Fu,and Wei Yang,Microstructure dependent fracture in nanocrystalline Au films,Materials Letters,2011 Xiaocheng Jiang,Bozhi Tian,Jie Xiang,Fang Qian,Gengfeng Zheng,Hongtao Wang,Liqiang Mai,and Charles M.Lieber,Rational growth of branched nanowire heterostructures with synthetically encoded properties and function,Proceedings of the National Academy of Sciences,2011,108(30):12212-12216 Bangdao Chen,Hongzhong Liu,Hongtao Wang,Fan Fan,Li Wang,Yucheng Ding,and Bingheng Lu,Thermal shock induced nanocrack as high efficiency surface conduction electron emitter,Applied Surface Science,2011,257(21):9125-9128 黄洋,and王宏涛,基于多模式耦合振动的压磁压电复合材料结构的优化设计,力学季刊,2010,31(4) Hongtao Wang,Sheng Xu,and Roy Gordon,Low Temperature Epitaxial Growth of High Permittivity Rutile TiO2 on SnO2,Electrochemical and Solid-State Letters,2010,13(9):G75-G78, Anmin Nie,Peng Wang,Hongtao Wang,and Scott*Mao,Defect-driven room-temperature coalescence of double-walled carbon nanotubes,Nanotechnology,2010,21(24):245302 Chuan Lin,Hongtao Wang,and Wei Yang,The thermomutability of single-walled carbon nanotubes by constrained mechanical folding,Nanotechnology,2010,21(36):365708 Chuan Lin,Hongtao Wang,and Wei*Yang,Shift in the percolation threshold of compressed composites—A 3D Monte Carlo simulation,Journal of Zhejiang University-Science A,2010,11(10):822-826 Chuan Lin,Hongtao Wang,and Wei*Yang,Variable percolation threshold of composites with fiber fillers under compression,J.Appl.Phys.,2010,108(1):013509-013505 Hongtao Wang,Junjie Wang,Roy Gordon,J.S.M.Lehn,Huazhi Li,Dai Hong,and D.V.Shenai,Atomic Layer Deposition of Lanthanum-Based Ternary Oxides,Electrochemical and Solid State Letters,2009,12(4):G13-G15 Hongtao Wang,Roy*Gordon,R.Alvis,and R.M.Ulfig,Atomic Layer Deposition of Ruthenium Thin Films from an Amidinate Precursor,Chemical Vapor Deposition,2009,15(10-12):312-319 Hongtao Wang,and Ramanathan Shriram,Effect of intrinsic stress from a nanoscale high-dielectric constant gate oxide on strain in a transistor channel,Applied Physics Letters,2007,91(1):012106-012103 Xinling Ma,Hongtao Wang,and Wei Yang,Dislocation-assisted grain growth in nanocrystalline copper under large deformation,IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials,2007,144 11-18 W.Yang,X.L.Ma,H.T.Wang,and W.Hong,Deformation and diffusion in nano-grained metals,IUTAM Symposium on Size Effects on Material and Structural Behavior at Micron-and Nano-Scales,2006,142 77-84 Wei Yang,Hongtao Wang,and Yonggang Huang,Abnormal tribological behavior of multiwalled nanotube rafts-Part II:Inclined rafts,Journal of Engineering Materials and Technology-Transactions of the ASME,2005,127(4):393-399 Wei Yang,Hongtao Wang,and Yonggang Huang,Abnormal tribological behavior of multiwalled nanotube rafts-Part I:Aligned rafts,Journal of Engineering Materials and Technology-Transactions of the ASME,2005,127(4):383-392 Hongtao Wang,Wei Yang,and A.H.W.Ngan,Enhanced diffusivity by triple junction networks,Scripta Materialia,2005,52(1):69-73 Hongtao Wang,and Wei Yang,A screw dislocation nucleated from a triple junction,International Journal of Plasticity,2005,21(11):2053-2070 Wei Yang,and Hongtao Wang,Mechanics modeling for deformation of nano-grained metals,Journal of the Mechanics and Physics of Solids,2004,52(4):875-889 W.Yang,X.L.Ma,Hongtao Wang,and W.Hong,Dislocation depleted deformation in nano-grained metals,Advances in Engineering Plasticity and Its Applications,Pts 1 and 2,2004,274-276 51-56 Hongtao Wang,and Wei Yang,Mechanical behavior of nanocrystalline metals,力学进展,2004,34(3):314-326 Hongtao Wang,and Wei Yang,Constitutive modeling for nanocrystalline metals based on cooperative grain boundary mechanisms,Journal of the Mechanics and Physics of Solids,2004,52(5):1151-1173 Hongtao Wang,and Wei Yang,Nitriding simulation for polycrystals of grain size gradient,Scripta Materialia,2004,50(4):529-532 X.L.Ma,Hongtao Wang,and W.Yang,Tribological behavior of aligned single-walled carbon nanotubes,Journal of Engineering Materials and Technology-Transactions of the Asme,2004,126(3):258-264 Wei Yang,Hongtao Wang,Xinling Ma,and Wei Hong,Advances in nanomechanics(continued),力学进展,2003,33(2):175-186 Wei Yang,Xinling Ma,Hongtao Wang,and Wei Hong,Advances in nanomechanics,力学进展,2002,32(2):161-174 W.Yang,Hongtao Wang,and W.Hong,Deformation of nano-grained metals,Mechanics and Material Engineering for Science and Experiments,2001,1-12 W.Yang,Hongtao Wang,and Y.Q.Cui,Composite Eshelby model and domain band geometries of ferroelectric ceramics,Science in China Series E-Technological Sciences,2001,44(4):403-413 Wei Yang,Fei Fang,Hongtao Wang,and Yuanqing Cui,Unconventional domain band structure at the crack tip in ferroelectric ceramics,Theoretical and Applied Fracture Mechanics,2001,37(1-3):397-408 Hongtao Wang,and W.Yang,A model for superplastic deformation of nano-grained metals,Mechanics and Material Engineering for Science and Experiments,2001,64-67

推荐链接
down
wechat
bug