当前位置: X-MOL首页全球导师 国内导师 › 苏中根

个人简介

苏中根 教授 博士生导师 浙江大学数学科学学院 浙江大学统计研究所 学习经历 1982.09---1986.06 安徽师范大学数学 本科生 1986.09---1989.06 杭州大学数学系 硕士研究生 1992.09---1995.06 复旦大学数学所 博士研究生 工作经历 1989.08-至今 杭州大学、浙江大学数学系工作 1998.1---1998.12 美国Cornell大学数学系访问学者 2001.2---2001.8 韩国Yonsei大学数学系访问学者 2002.2---2002.6 美国Lehigh大学数学系访问学者 2003.10---2003.12 中科院应用数学所访问学者 2006.1---2006.12 英国Leeds大学数学学院访问学者 2010.10---2010.12美国Harvard大学数学系访问学者 2012.7---2012.8 德国Bielefeld大学ZIF访问学者 2016.7---2016.9 美国Michigan State University 统计系访问学者 教学与课程 主讲本科生课程:概率论; 随机过程 主讲研究生课程:高等概率论; 测度弱收敛 科研 基金项目: 2018.1---2022.12 随机环境中的概率模型,国家自然科学基金(主参) 2014.1---2017.12 行列式点过程的概率分析,国家自然科学基金(主持) 2011.1---2013.12 随机矩阵普适性原理及其应用,国家自然科学基金(主持) 2007.1---2009.12 高维随机矩阵理论及其应用,国家自然科学基金(主持) 2004.1---2006.12 高维渗流模型的渐近理论及其应用,国家自然科学基金(主持) 2009.9--- 2012.6 随机矩阵和随机划分的概率极限理论,浙江省自然科学基金杰出青年团队项目(主持) 2011.1---2013.12 随机矩阵的概率极限理论及其应用, 教育部博士点专项基金(主持) 奖励荣誉 【1】林正炎、苏中根、张立新主编,《概率论》, 浙江大学出版社,列为十一五、十二五国家级规划教材,浙江大学2013年度十大教材 【2】林正炎、陆传荣、苏中根主编,《概率极限理论基础》,高等教育出版社, 列为九五国家级规划教材, 荣获2012年度全国普通高校优秀教材一等奖

研究领域

概率极限理论,统计大样本理论,随机矩阵,高维数据分析

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[41]Su,ZhonggenFree energy fluctuations for a mixture of directed polymers.Sci.China Math.60 (2017), no.3,511–528. [40]Su,ZhonggenTracy-Widom law with applications.(Chinese)Chinese J.Appl.Probab.Statist.32 (2016), no.6,551–580. [39]Su,ZhonggenProbabilistic analysis for random integer partitions.Adv.Math.(China)45 (2016), no.6,861–898. [38]Zhou,Li-kai;Su,Zhong-genDiscretization error of irregular sampling approximations of stochastic integrals.Appl.Math.J.Chinese Univ.Ser.B31(2016), no.3,296–306. [37]Z.G.Su,Random Matrices and Random Partitions---Normal Convergence,World Scientific,2015. [36]Z.G.Su,Probabilistic analysis for random integer partitions,ADVANCES IN MATHEMATICS(CHINA),V.44,No.2,2015,doi:10.11845/sxjz.2015004a [35]Z.G.Su,Normal convergence for random partitions with multiplicative measures,Theory of Probability and its Applications,V.59,No.1,40-69,2015 [34]Q.W.Wang,Z.G.Su,J.F.Yao,Joint CLT for several random sesquilinear forms with applications to large-dimensional spiked population models,Electron.J.Probab.19(2014),no.103,1–28. [33]Shi,Minghua;Liu,Qing;Su,Zhonggen]Limiting behaviour of moving average processes under dependence assumption.Math.Appl.(Wuhan)27 (2014), no.3,507–513. [32]Z.G.Su,Fluctuations of Deformed Random Matrices,Front.Math.China,8(3):609–641,2013 [31]Z.G.Su,Q.M.Shao,Asymptotics for variance of the number of zero roots of random trigonometric polynomials,Science China Mathematics,V.55,No.11,2347–2366,2012 doi:10.1007/s11425-012-4525-5 [30]Z.G.Bao,Z.G.Su,Local Semicircle Law and Gaussian Fluctuations for Hermite Ensembles,Science China Mathematics,V.42,No.10,1017-1030,2012 arXiv:1104.3431. [29]Z.G.Su,On increasing subsequences of minimal Erdos-Szekeres permutations.Acta Math.Sinica,Vol.27,No.8,1573-1580,2011 [28]Z.G.Su,On the second order correlation of characteristic polynomials of Hermite$\beta$ensemble,Statistics and Probability Letters,V.80,No.19-20,1500-1507. [27]Z.G.Su,Circularβensembles,CMV representation,characteristic polynomials,Science in China,Series A Mathematics,Vol.52,No.7,2009 [26]Z.G.Su,Transition distributions of Young diagrams under periodically weighted Plancherel Measures,Acta Mathematicae Applicatae Sinica,Englsih Series,Vol.25,No.4,655-674,2009 [25]Z.G.Su,Precise asymptotics for random matrices and random growth models,Acta Math.Sinica,English Series,24(2008). [24]Bogachev,Leonid V.;Z.G.Su,Gaussian fluctuations of Young diagrams under the Plancherel measure.Proc.R.Soc.A 463(2007),no.2080,1069--1080. [23]Bogachev,Leonid V.;Z.G.Su,Central Limit Theoremfor Random Partitions under the Plancherel Measure,Doklady Mathematics,75(2007),381-384. [22]Z.G.Su,Asymptotic analysis of random partitions.Advanced Lectures in Mathematics(Higher Education Press),2(2007),44-79. [21]Z.G.Su,Gaussian fluctuations in complex sample covariance matrices.Electron.J.Probab.11(2006),no.48,1284--1320(electronic). [20]Shao,Qi-Man;Z.G.Su,The Berry-Esseen bound for character ratios.Proc.Amer.Math.Soc.134(2006),no.7,2153--2159. [19]Z.G.Su,Probabilistic analysis for the random assignment problem.(Chinese)Adv.Math.(China)34(2005),no.2,133--144. [18]Lee,Sungchul;Z.G.Su,The central limit theorem for the independence number for minimal spanning trees in the unit square.Stein's method and applications,103--117,Lect.Notes Ser.nst.Math.Sci.Natl.Univ.Singap.,5,Singapore Univ.Press, Singapore,2005. [17]Z.G.Su,The law of the iterated logarithm for character ratios.Statist.Probab.Lett.71(2005),no.4,337--346. [16]Z.G.Su,Probability limit theorems in the random assignment problem.Stochastic analysis and applications.Vol.3,169--180,Nova Sci.Publ.,Hauppauge,NY,2003. [15]Lee,Sungchul;Z.G.Su,On the random$n\times m$assignment problem.Commun.Korean Math.Soc.17(2002),no.4,719--729. [14]Lee,Sungchul;Z.G.Su,Gaussian tail for empirical distributions of MST on random graphs.Statist.Probab.Lett.58(2002),no.4,363--368. [13]Lee,Sungchul;Z.G.Su,On the fluctuation in the random assignment problem.Commun.Korean Math.Soc.17(2002),no.2,321--330. [12]Lee,Sungchul;Z.G.Su,The symmetry in the martingale inequality.Statist.Probab.Lett.56(2002),no.1,83--91. [11]Su,Z.G.On central limit theorems for vector random measures and measure-valued processes.Teor.Veroyatnost.I Primenen.46(2001),no.3,513--534;translation in Theory Probab.Appl.46(2003),no.3,448—468 [10]Z.G.Su,Probability limit theorems of classical combinatorial optimization problems.J.Zhejiang Univ.Sci.Ed.27(2000),no.6,700--713. [9]Z.G.Su,A lemma on AB-percolation models in high dimension.J.Zhejiang Univ.Sci.Ed.27(2000),no.6,682--688. [8]Kesten,Harry;Z.G.Su,Asymptotic behavior of the critical probability forrho percolation in high dimensions.Probab.Theory Related Fields 117(2000),no.3,419--447. [7]Kesten,Harry;Su,Zhonggen,Some remarks on AB-percolation in high dimensions.Probabilistic techniques in equilibrium and nonequilibrium statistical physics.J.Math.Phys.41(2000),no.3,1298--1320. [6]Su,Zhong Gen,On the weak convergence of vector-valued continuous random processes.Teor.Veroyatnost.i Primenen.43(1998),no.3,561--576;translation in Theory Probab.Appl.43(1999),no.3,463—476 [5]Su,Zhonggen,Central limit theorems for random processes with sample paths in exponential Orlicz spaces.Stochastic Process.Appl.66(1997),no.1,1--20. [4]Z.G.Su,The law of the iterated logarithm and Marcinkiewicz law of large numbers for B-valued U-statistics.J.Theoret.Probab.9(1996),no.3,679--701. [3]Z.G.Su,On the central limit theorem in product spaces.Appl.Math.J.Chinese Univ.Ser.B 10(1995),no.4,367--378. [2]Z.G.Su,Marcinkiewicz laws of large numbers for a sequence of independent Banach space-valued random variables.(Chinese)Acta Math.Sinica 36(1993),no.6,731--739. [1]Z.G.Su,Strong approximation of set-indexed processes for phi-mixing random fields.(Chinese)Acta Math.Sinica 35(1992),no.1,101--111

推荐链接
down
wechat
bug