近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[41]Su,ZhonggenFree energy fluctuations for a mixture of directed polymers.Sci.China Math.60 (2017), no.3,511–528.
[40]Su,ZhonggenTracy-Widom law with applications.(Chinese)Chinese J.Appl.Probab.Statist.32 (2016), no.6,551–580.
[39]Su,ZhonggenProbabilistic analysis for random integer partitions.Adv.Math.(China)45 (2016), no.6,861–898.
[38]Zhou,Li-kai;Su,Zhong-genDiscretization error of irregular sampling approximations of stochastic integrals.Appl.Math.J.Chinese Univ.Ser.B31(2016), no.3,296–306.
[37]Z.G.Su,Random Matrices and Random Partitions---Normal Convergence,World Scientific,2015.
[36]Z.G.Su,Probabilistic analysis for random integer partitions,ADVANCES IN MATHEMATICS(CHINA),V.44,No.2,2015,doi:10.11845/sxjz.2015004a
[35]Z.G.Su,Normal convergence for random partitions with multiplicative
measures,Theory of Probability and its Applications,V.59,No.1,40-69,2015
[34]Q.W.Wang,Z.G.Su,J.F.Yao,Joint CLT for several random sesquilinear forms with applications to large-dimensional spiked population models,Electron.J.Probab.19(2014),no.103,1–28.
[33]Shi,Minghua;Liu,Qing;Su,Zhonggen]Limiting behaviour of moving average processes under dependence assumption.Math.Appl.(Wuhan)27 (2014), no.3,507–513.
[32]Z.G.Su,Fluctuations of Deformed Random Matrices,Front.Math.China,8(3):609–641,2013
[31]Z.G.Su,Q.M.Shao,Asymptotics for variance of the number of zero roots of random trigonometric polynomials,Science China Mathematics,V.55,No.11,2347–2366,2012 doi:10.1007/s11425-012-4525-5
[30]Z.G.Bao,Z.G.Su,Local Semicircle Law and Gaussian Fluctuations for Hermite Ensembles,Science China Mathematics,V.42,No.10,1017-1030,2012 arXiv:1104.3431.
[29]Z.G.Su,On increasing subsequences of minimal Erdos-Szekeres permutations.Acta Math.Sinica,Vol.27,No.8,1573-1580,2011
[28]Z.G.Su,On the second order correlation of characteristic polynomials of Hermite$\beta$ensemble,Statistics and Probability Letters,V.80,No.19-20,1500-1507.
[27]Z.G.Su,Circularβensembles,CMV representation,characteristic polynomials,Science in China,Series A Mathematics,Vol.52,No.7,2009
[26]Z.G.Su,Transition distributions of Young diagrams under periodically weighted Plancherel Measures,Acta Mathematicae Applicatae Sinica,Englsih Series,Vol.25,No.4,655-674,2009
[25]Z.G.Su,Precise asymptotics for random matrices and random growth models,Acta Math.Sinica,English Series,24(2008).
[24]Bogachev,Leonid V.;Z.G.Su,Gaussian fluctuations of Young diagrams under the Plancherel measure.Proc.R.Soc.A 463(2007),no.2080,1069--1080.
[23]Bogachev,Leonid V.;Z.G.Su,Central Limit Theoremfor Random Partitions under the Plancherel Measure,Doklady Mathematics,75(2007),381-384.
[22]Z.G.Su,Asymptotic analysis of random partitions.Advanced Lectures in Mathematics(Higher Education Press),2(2007),44-79.
[21]Z.G.Su,Gaussian fluctuations in complex sample covariance matrices.Electron.J.Probab.11(2006),no.48,1284--1320(electronic).
[20]Shao,Qi-Man;Z.G.Su,The Berry-Esseen bound for character ratios.Proc.Amer.Math.Soc.134(2006),no.7,2153--2159.
[19]Z.G.Su,Probabilistic analysis for the random assignment problem.(Chinese)Adv.Math.(China)34(2005),no.2,133--144.
[18]Lee,Sungchul;Z.G.Su,The central limit theorem for the independence number for minimal spanning trees in the unit square.Stein's method and applications,103--117,Lect.Notes Ser.nst.Math.Sci.Natl.Univ.Singap.,5,Singapore Univ.Press,
Singapore,2005.
[17]Z.G.Su,The law of the iterated logarithm for character ratios.Statist.Probab.Lett.71(2005),no.4,337--346.
[16]Z.G.Su,Probability limit theorems in the random assignment problem.Stochastic analysis and applications.Vol.3,169--180,Nova Sci.Publ.,Hauppauge,NY,2003.
[15]Lee,Sungchul;Z.G.Su,On the random$n\times m$assignment
problem.Commun.Korean Math.Soc.17(2002),no.4,719--729.
[14]Lee,Sungchul;Z.G.Su,Gaussian tail for empirical distributions of MST on random graphs.Statist.Probab.Lett.58(2002),no.4,363--368.
[13]Lee,Sungchul;Z.G.Su,On the fluctuation in the random assignment problem.Commun.Korean Math.Soc.17(2002),no.2,321--330.
[12]Lee,Sungchul;Z.G.Su,The symmetry in the martingale inequality.Statist.Probab.Lett.56(2002),no.1,83--91.
[11]Su,Z.G.On central limit theorems for vector random measures and measure-valued processes.Teor.Veroyatnost.I Primenen.46(2001),no.3,513--534;translation in Theory Probab.Appl.46(2003),no.3,448—468
[10]Z.G.Su,Probability limit theorems of classical combinatorial optimization problems.J.Zhejiang Univ.Sci.Ed.27(2000),no.6,700--713.
[9]Z.G.Su,A lemma on AB-percolation models in high dimension.J.Zhejiang Univ.Sci.Ed.27(2000),no.6,682--688.
[8]Kesten,Harry;Z.G.Su,Asymptotic behavior of the critical probability forrho percolation in high dimensions.Probab.Theory Related Fields 117(2000),no.3,419--447.
[7]Kesten,Harry;Su,Zhonggen,Some remarks on AB-percolation in high dimensions.Probabilistic techniques in equilibrium and nonequilibrium statistical physics.J.Math.Phys.41(2000),no.3,1298--1320.
[6]Su,Zhong Gen,On the weak convergence of vector-valued continuous random processes.Teor.Veroyatnost.i Primenen.43(1998),no.3,561--576;translation in Theory Probab.Appl.43(1999),no.3,463—476
[5]Su,Zhonggen,Central limit theorems for random processes with sample paths in exponential Orlicz spaces.Stochastic Process.Appl.66(1997),no.1,1--20.
[4]Z.G.Su,The law of the iterated logarithm and Marcinkiewicz law of large numbers for B-valued U-statistics.J.Theoret.Probab.9(1996),no.3,679--701.
[3]Z.G.Su,On the central limit theorem in product spaces.Appl.Math.J.Chinese Univ.Ser.B 10(1995),no.4,367--378.
[2]Z.G.Su,Marcinkiewicz laws of large numbers for a sequence of independent Banach space-valued random variables.(Chinese)Acta Math.Sinica 36(1993),no.6,731--739.
[1]Z.G.Su,Strong approximation of set-indexed processes for phi-mixing random fields.(Chinese)Acta Math.Sinica 35(1992),no.1,101--111