个人简介
1981.9-1985.7,复旦大学数学系,本科生;
1985.9-1988.7,复旦大学数学所,硕士研究生;
1988.9-1991.7,复旦大学数学所,博士研究生;
1991.8-1993.7,浙江大学高等数学研究所,博士后;
1993.8-2007.8,浙江大学教师;
2007.9-2011.2, 复旦大学教师;
2011.3-现在,浙江大学教师;
1994.12,副教授;
1998.7,教授。
教学与课程
近年主讲课程:
1、数学分析(甲),数学求是科学班;
2、复变函数,数学求是科学班;
3、复分析,数学学院专业选修课。
科研
承担的国家自然科学基金项目:
1、抛物和Cremer有理函数的拓扑动力学,1995.01~1997.12;
2、经典复分析(“九五”重点成员),1996.01 ~2001.12;
3、共形几何中的若干问题及其应用,2002.01 ~2004.12;
4、复动力系统与拟共形映射(“十五”重点成员),2003.01~2006.12;
5、解析函数的迭代理论,2007.01~2009.12;
6、复动力系统若干问题研究(“十一五”重点成员),2009.01~2012.12;
7、复动力系统及其应用(“十二五”重点成员),2013.1~2017.12;
8、有理函数参数空间的拓扑性质,2018.1~2021.12.
研究与成果
研究一维复动力系统中的拓扑问题,取得以下主要研究成果:
给出多项式Julia集为Cantor集的充分必要条件,解决了Branner-Hubbard猜想;
证明了多项式有界吸引和抛物Fatou区域是Jordan区域;
证明了Devaney关于McMullen函数族在动力系统平面和参数空间的猜想;
证明多项式Newton迭代映射吸引Fatou区域的边界的局部连通性。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
P. Roesch and Y. Yin, The boundary of bounded polynomial Fatou components, C R Acad Sci Paris Ser I., 346(2008), no.15-16, 877-880.
W. Qiu and Y. Yin, Proof of the Branner-Hubbard conjecture on Cantor Julia set, Science in China, Vol.52, No.1(2009), 45-65.
Y. Yin and Y. Zhai, No invariant line fields on Cantor Julia sets, Forum Mathematicum, 22(2010), No.1, 75-94.
J. Qiao, Y. Yin and J. Gao, Feigenbaum Julia sets of Yang-Lee zeros, Ergodic Theory and Dynamical Systems, 30(2010), 1573-1591.
X. Wang, W. Qiu, Y. Yin, J. Qiao and J. Gao, Connectivity of the Mandelbrot set for the family of renormalization transformations, Science in China, Ser.A, 53(2010), 849-862
W. Peng, W. Qiu, P. Roesch, L. Tan and Y. Yin, A tableau appproach of the KSS nest, Conformal geometry and dynamics(AMS electronic journal), 14(2010), 35-67.
X. Wang, W. Qiu, Y. Yin, Local connectivity of Julia sets: McMullen maps, Adv. in Math., 229(2012), 2525-2577.
W. Peng, Y. Yin and Y. Zhai, On the quasiconformal surgery of rational maps with Cantor Julia sets, Ergodic Theory and Dynamical Systems, 32(2012), 1711-1726.
W. Qiu, Y. Xiao, and Y. Yin, On dynamics of generalized McMullen maps, Ergodic Theory and Dynamical Systems, 34(2014), 2093-2112.
W. Qiu, F. Yang, and Y. Yin, Rational maps whose Juia sets are Cantor circles, Ergodic Theory and Dynamical Systems, 35(2015), 499-529.
W. Qiu, P. Roesch, X. Wang and Y. Yin, Hyperbolic components of McMullen maps, Annales de l’ENS, 48(2015), 703-737.
W. Qiu, F. Yang, and Y. Yin, Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps, Discrete and Continuous Dynamical Systems-A, Vol.36, No.6, 2016, 3375-3416.
X. Wang and Y. Yin, Global topology of hyperbolic components: Cantor circle case, Proc. of LMS, 2017, 115(4), 897-923.
P. Roesch, X. Wang and Y. Yin, Moduli space of cubic Newton maps, Adv. Math., 322(2017), 1-59.
W. Qiu, F. Yang and Y. Yin, Quasisymmetric geometry of the Julia sets of McMullen maps, SCIENCE CHINA Mathematics, 2018.
预印本:
P. Roesch and Y. Yin, The boundary of bounded critical Fatou components for polynomials. pdf
W.Wang, Y.Yin and J.Zeng, Dynamics of Newton maps, 2018.