当前位置: X-MOL首页全球导师 国内导师 › 史宇光

个人简介

教育经历 1996中科院数学所博士 1990杭州大学学士 工作经历 2004-北京大学数学科学学院教授 2001-2004北京大学数学科学学院副教授 1999-2001北京大学数学科学学院助理教授 1997-1999北京大学数学科学学院博士后 1996-1997香港中文大学博士后 科研项目 1.重点项目:渐近平坦与渐近双曲流形中的几何分析问题,2018.1.1-2022.12.31,项目批准号:11731001 2.面上项目:一类无穷远处具有渐近结构的非紧完备流形上的等周问题研究,2017.1.1-2020.12.31,项目批准号:11671015 主讲课程 几何学,数学分析,线性代数,微分几何,偏微分方程选讲,泛函分析,Riemann几何引论 荣誉获奖 2007年获国家杰出青年基金项目资助。 2010年获第十一届中国青年科技奖。 2010年获由国际理论物理中心,Abel基金会,国际数学家联盟颁发的Ramanujan奖; 主持国家基金委重大项目:信息处理中的关键数学问题(2010-2013) 2013年获教育部长江特聘教授 2016年享受政府特殊津贴 2016年入选国家万人计划

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Y.G.Shi,:A Partial Regularity Result of Harmonic Maps from Manifolds With Bounded measurable Riemannian Metrics 。Commun. Anal. Geom. Vol.4, No.1, 121-128, 1996 2. Y.G.Shi, L.F.Tam & Tom Y.H. Wan: Harmonic maps on hyperboblic spaces with singular boundary value. J. Diff.Geom.51(1999)551-600. 3. Y.G. Shi: On the construction of some harmonic maps from R^m to H^n. Acta Math. Sinica, English Series Vol.17, No.2 (2001)301-304. 4. L.Ni,Y.G.Shi,L.-F.Tam: Poisson equation, Poincare-Lelong equation and curvature deacy on complete Kahler manifolds, J.Diff.Geometry, 57(2001)339-388 5. Y.G.Shi, L.F.Tam:Harmonic maps from Euclidean spaces to hyperboblic spaces with symmetry。Pacific J. Math Vol。202,No.1 2002. 227-256 6. L.Ni,Y.G.Shi,L.F.Tam:Ricci flatness of asymptotically locally Euclidean metrics, Trans. AMS (2002) ,Vol355, No.5, 1933-1959. 7. X.H.Mo, Y.G.Shi: A nonexistence theorem of proper harmonic morphism between hyperbolic spaces, Geom. Dedicata 93,89-94,2002. 8. Y.G.Shi, L.F.Tam:Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. Journal Differential Geometry 62(2002)79――125。 9. Y.G.Shi, L.F.Tam:Quasi-Spherical Metrics and Applications, Commun. Math. Phys. 250, 65-80 (2004). 10.Y.G. Shi, G.Tian: Rigidity of asymptotically hyperboblic manifolds, Commun.Math.Phys。259,545-559(2005) 11.Y.G.Shi, L.F.Tam:Asymptotically hyperbolic metrics on the unit ball with horizons. Manuscripta Math. Vol.122, No.1, 2007, 97-117 12.X.H.Mo, Y.G.Shi:A non-existence theorem of proper harmonic morphisms from weakly asymptotically hyperbolic manifolds. Tohoku Math J, 58(2006), 359-368. 13.Y.G.Shi, L.F.Tam: Rigidity of compact manifolds and positivity of quasilocal mass, Class.Quantum Grav.24 (2007) 2357-2366. 14.Shi, Yuguang; Tam, Luen-Fai Quasi-local mass and the existence of horizons. Comm. Math. Phys. 274 (2007), no. 2,277–295 15.Li Z.Y. Shi Y.G., Wu P. Asymptotically hyperbolic metric on unit ball with multiple horizons, Proceeding AMS, 4003-4010 Vol.136 No.1, 2008 16.Li Z.Y. Shi Y.G., Maximal slice in ADS spaces, Tohoku Math J, 60(2008), 253-265. 17.Fan, Xu-Qian; Shi, Yuguang; Tam, Luen-Fai Large-sphere and small-sphere limits of the Brown-York mass. Comm. Anal. Geom.17 (2009), no. 1, 37–72 18.Shi, Yuguang; Wang, Guofang; Wu, Jie On the behavior of quasi-local mass at the infinity along nearly round surfaces. Ann. Global Anal. Geom. 36 (2009), no. 4, 419–441 19.P.Z. Miao, Y.G.Shi, L.F.Tam: On Geometric problems related to Brown-York and Liu-Yau quasi-local mass. Commun. Math. Phys. 298, 437--459 (2010). 20.Qing, Jie; Shi, Yuguang; Wu, Jie Normalized Ricci flows and conformally compact Einstein metrics. Calc. Var. Partial Differential Equations 46 (2013), no. 1-2, 183–211. 53C25 (58J05) 21.Hu, Xue; Shi, YuGuang Static flow on complete noncompact manifolds I: short-time existence and asymptotic expansions at conformal infinity. Sci. China Math. 55 (2012), no. 9, 1883–1900. 53C25 22.Hu, Xue; Qing, Jie; Shi, Yuguang Regularity and rigidity of asymptotically hyperbolic manifolds. Adv. Math. 230 (2012), no. 4-6, 2332–2363. 53Cxx 23.R. Gicquaud, D.D. Ji and Y.G. Shi: On the asymptotic behavior of Einstein manifolds with an integral bound on the Weyl curvature, Communications in Analysis and Geometry. Vol.21, No.5, 1-33, 2013 24.Bao, Chao; Shi, Yuguang: Gauss maps of translating solitons of mean curvature flow. Proc. Amer. Math. Soc. 142 (2014), no. 12, 4333–4339. 53C44 (58J05) 25.Xue Hu, Dandan Ji, Yuguang Shi:Volume Comparison of Conformally Compact Manifolds with Scalar CurvatureR ≥ −n (n − 1); Ann. Henri Poincar´e 17(2016),953-977 DOI 10.1007/s00023-015-0411-3 26.Yuguang,Shi: The Isoperimetric Inequality on Asymptotically Flat Manifolds with Nonnegative Scalar Curvature, Int. Math. Res. Not. Volume 2016, Issue 22, Pp. 7038-7050 27.Li, Gang; Qing, Jie; Shi, Yuguang Gap phenomena and curvature estimates for conformally compact Einstein manifolds. Trans. Amer. Math. Soc. 369 (2017), no. 6, 4385–4413. 53C25 (58J05) 28.Shi, Yuguang; Tam, Luen-Fai Scalar curvature and singular metrics. Pacific J. Math. 293 (2018), no. 2, 427–470.

推荐链接
down
wechat
bug