当前位置: X-MOL首页全球导师 海外导师 › Herbert, John

个人简介

John Herbert received B.S. degrees in chemistry and mathematics from Kansas State University in 1998, where he was a Barry M. Goldwater Scholar. He received a Ph.D. in physical chemistry from the University of Wisconsin-Madison in 2003, where he was a National Defense Science and Engineering Graduate Fellow with John Harriman. This was followed by postdoctoral work with Anne McCoy at The Ohio State University and, subsequently, with Martin Head-Gordon at the University of California-Berkeley, where he was a National Science Foundation Mathematical Sciences Postdoctoral Fellow. He joined the Ohio State faculty in 2006. Professor Herbert received a CAREER award from the National Science Foundation and a Presidential Early Career Award for Scientists and Engineers (PECASE) from the White House Office of Science and Technology Policy. Other awards include an Alfred P. Sloan Foundation Research Fellowship, the Camille Dreyfus Teacher-Scholar Award, and the ACS Outstanding Junior Faculty Award in Computational Chemistry.

研究领域

Physical/Theoretical/Chemical Physics

Electronic structure theory and molecular quantum mechanics Our group develops and applies new electronic structure models and algorithms. The aim is to improve the accuracy but also to reduce the cost of traditional quantum chemistry calculations, which increases steeply as a function of the number of atoms in the system. This can be accomplished either by developing more efficient numerical algorithms, or by developing better theories or models that are intrinsically lower-scaling. Any reduction in cost makes quantum chemistry amenable to larger systems or longer simulation time scales, and a key goal of our group is to bring quantitative electronic structure theory to bear on macromolecular systems and condensed-phase environments. Our group is one of the principal developers of the Q-Chem software package for electronic structure calculations, and methods developed in our group are thereby rapidly disemminated into the broader chemistry community for use by practicing chemists.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Experimental benchmark data and systematic evaluation of two a posteriori, polarizable-continuum corrections for vertical excitation energies in solution. J.-M. Mewes, Z.-Q. You, M. Wormit, T. Kriesche, J. M. Herbert, and A. Dreuw J. Phys. Chem. A (in press). (Jacopo Tomasi Festschrift) The quantum chemistry of loosely bound electrons. J. M. Herbert, Ch. 8 of Reviews in Computational Chemistry 28, ed. by A. L. Parrill and K. B. Lipkowitz (Wiley, to be published in April 2015). Polarizable continuum models for (bio)molecular electrostatics: Basic theory and recent developments for macromolecules and simulations. J. M. Herbert and A. W. Lange, in Many-Body Effects and Electrostatics in Multi-Scale Computations of Biomolecules, ed. by Q. Cui, P. Ren, and M. Meuwly (to be published). Analytic derivative couplings in time-dependent density functional theory: Quadratic response theory versus pseudo-wavefunction approach. X. Zhang and J. M. Herbert, J. Chem. Phys. 142, 064109:1–12 (2015). Accurate and efficient quantum chemistry calculations for noncovalent interactions in many-body systems: The XSAPT family of methods. K. U. Lao and J. M. Herbert, J. Phys. Chem. A 119 235–252 (2015). (Invited Feature Article; see our cover artwork.) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kús, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio Jr., H. Dop, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, P. A. Pieniazek, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, N. Sergueev, S. M. Sharada, S. Sharmaa, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, V. Vanovschi, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhou, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xua, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Mol. Phys. 113, 184–215 (2015). Ab initio implementation of the Frenkel-Davydov exciton model: A naturally parallelizable approach to computing collective excitations in crystals and aggregates. A. F. Morrison, Z.-Q. You, and J. M. Herbert, J. Chem. Theory Comput. 10, 5366–5376 (2014). Aiming for benchmark accuracy with the many-body expansion. R. M. Richard, K. U. Lao, and J. M. Herbert, Acc. Chem. Res. 47, 2828–2836 (2014). Optical spectroscopy of the bulk and interfacial hydrated electron from ab initio calculations. F. Uhlig, J. M. Herbert, M. P. Coons, and P. Jungwirth, J. Phys. Chem. A 118, 7507–7515 (2014). (Kenneth Jordan Festschrift) Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory. X. Zhang and J. M. Herbert, J. Chem. Phys. 141, 064104:1–9 (2014). Excited-state deactivation pathways in uracil versus hydrated uracil: Solvatochromatic shift in the 1nπ* state is the key. X. Zhang and J. M. Herbert, J. Phys. Chem. B 118, 7806–7817 (2014). (James Skinner Festschrift) Understanding the many-body expansion for large systems. I. Precision considerations. R. M. Richard, K. U. Lao, and J. M. Herbert, J. Chem. Phys. 141, 014108:1–14 (2014). Symmetry-adapted perturbation theory with Kohn-Sham orbitals using non-empirically tuned, long-range-corrected density functionals. K. U. Lao and J. M. Herbert, J. Chem. Phys. 140, 044108:1–8 (2014). Periodic boundary conditions for QM/MM calculations: Ewald summation for extended Gaussian basis sets. Z. C. Holden, R. M. Richard, and J. M. Herbert, J. Chem. Phys. 139, 244108:1–13 (2013). [Erratum: 142, 059901:1–2 (2015)]. Approaching the complete-basis limit with a truncated many-body expansion. R. M. Richard, K. U. Lao, and J. M. Herbert, J. Chem. Phys. 139, 224102:1–11 (2013). Efficient monomer-based quantum chemistry methods for molecular and ionic clusters. L. D. Jacobson, R. M. Richard, K. U. Lao, and J. M. Herbert, Annu. Rep. Comput. Chem. 9, 25–56 (2013). Achieving the CCSD(T) basis-set limit in sizable molecular clusters: Counterpoise corrections for the many-body expansion. R. M. Richard, K. U. Lao, and J. M. Herbert, J. Phys. Chem. Lett. 4, 2674–2680 (2013). An improved treatment of empirical dispersion and a many-body energy decomposition scheme for the explicit polarization plus symmetry-adapted perturbation theory (XSAPT) method. K. U. Lao and J. M. Herbert, J. Chem. Phys. 139, 034107:1–16 (2013). [Erratum: 140, 119901 (2014)]. Many-body expansion with overlapping fragments: Analysis of two approaches. R. M. Richard and J. M. Herbert, J. Chem. Theory Comput. 9, 1408–1416 (2013). Improving generalized Born models by exploiting connections to polarizable continuum models. II. Corrections for salt effects. A. W. Lange and J. M. Herbert, J. Chem. Theory Comput. 8, 4381–4392 (2012).

推荐链接
down
wechat
bug