Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Designing, Structural Determination, and Antibacterial Activity of Injectable Ciprofloxacin-loaded gelatin-sodium Carboxymethyl Cellulose composite Nanogels against Staphylococcus aureus

Author(s): Jinhuan Liu, Wei Song, Samah Attia Algharib, Wanhe Luo* and Wei Chen

Volume 20, Issue 9, 2023

Published on: 21 July, 2022

Page: [1327 - 1336] Pages: 10

DOI: 10.2174/1567201819666220513121219

Price: $65

Abstract

Background: The development of nanogels has become an attractive strategy to enhance the antibacterial activity performance of bacteria.

Methods: The ciprofloxacin composite nanogels were successfully prepared by electrostatic interaction between gelatin (positive charge) and CMC (negative charge) with the help of sodium tripolyphosphate (TPP) as ionic crosslinkers, to increase the antibacterial activity of ciprofloxacin against Staphylococcus aureus (S. aureus) mastitis infection. The formulation screening, characterization, in vitro release, antibacterial activity, and biosafety were studied.

Results: The optimized formulation was fabricated of 20 mg/mL (CMC) and 50mg/mL (gelatin). The optimized ciprofloxacin composite nanogels were homogenous canary yellow suspension with a sedimentation rate of 1 and were incorporated in nano-sized cross-linked polymeric networks. The particle sizes were distributed as, 402.7±1.3 nm, PDI of 0.12±0.01, ZP of -24.5±0.2mv, EE of 74.28%±0.03%, LC of 20.5%±0.05%. Scanning electron microscope images revealed that ciprofloxacin might be incorporated in nano-sized cross-linked polymeric networks. Fourier transform infrared showed that the spontaneous electrostatic interactions between CMC and gelatin produce the network structure and form the composite nanogels. Meanwhile, in vitro release study showed that ciprofloxacin composite nanogels had sustained-release performances. The ciprofloxacin composite nanogels had shown better antibacterial activity against SCV 102 isolate than S. aureus ATCC 29213 and S. aureus 101isolates. The biosafety studies suggested the great promise of the injectable ciprofloxacin composite nanogels as a biocompatible breast injection.

Conclusion: This study will afford a potential approach for developing injectable ciprofloxacin-loaded gelatin-CMC composite nanogels for cow S. aureus mastitis therapy.

Keywords: Ciprofloxacin, nanogels, Staphylococcus aureus (S. aureus), biosafety, mastitis, biocompatible.

Graphical Abstract
[1]
Samsami, M.; Shabani, M.; Hajiesmaeili, M.; Tavakoli-Ardakani, M.; Ardehali, S.H.; Fatemi, A.; Barati, S.; Moradi, O.; Sahraei, Z. The effects of vitamin E on colistin-induced nephrotoxicity in treatment of drug-resistant gram-negative bacterial infections: A randomized clinical trial. J. Infect. Chemother., 2021, 27(8), 1181-1185.
[http://dx.doi.org/10.1016/j.jiac.2021.03.013] [PMID: 33863635]
[2]
Liu, Y.; Chen, D.; Zhang, A.; Xiao, M.; Li, Z.; Luo, W.; Pan, Y.; Qu, W.; Xie, S. Composite inclusion complexes containing hyaluronic acid/chitosan nanosystems for dual responsive enrofloxacin release. Carbohydr. Polym., 2021, 252, 117162.
[http://dx.doi.org/10.1016/j.carbpol.2020.117162] [PMID: 33183613]
[3]
Zhou, K.; Li, C.; Chen, D.; Pan, Y.; Tao, Y.; Qu, W.; Liu, Z.; Wang, X.; Xie, S. A review on nanosystems as an effective approach against infections of Staphylococcus aureus. Int. J. Nanomedicine, 2018, 13, 7333-7347.
[http://dx.doi.org/10.2147/IJN.S169935] [PMID: 30519018]
[4]
Fung-Tomc, J.; Kolek, B.; Bonner, D.P. Ciprofloxacin-induced, low-level resistance to structurally unrelated antibiotics in Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 1993, 37(6), 1289-1296.
[http://dx.doi.org/10.1128/AAC.37.6.1289] [PMID: 8328778]
[5]
Yang, X.; Li, Y.; Wang, X. Effects of ciprofloxacin exposure on the earthworm Eisenia fetida. Environ. Pollut., 2020, 262, 114287.
[http://dx.doi.org/10.1016/j.envpol.2020.114287] [PMID: 32146370]
[6]
Akbari, V.; Abedi, D.; Pardakhty, A.; Sadeghi-Aliabadi, H. Ciprofloxacin nano-niosomes for targeting intracellular infections: An in vitro evaluation. J. Nanopart. Res., 2013, 15(4), 1-14.
[http://dx.doi.org/10.1007/s11051-013-1556-y]
[7]
Du, J.; El-Sherbiny, I.M.; Smyth, H.D. Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery. AAPS PharmSciTech, 2014, 15(6), 1535-1544.
[http://dx.doi.org/10.1208/s12249-014-0176-x] [PMID: 25079240]
[8]
Zhou, K.; Wang, X.; Chen, D.; Yuan, Y.; Wang, S.; Li, C.; Yan, Y.; Liu, Q.; Shao, L.; Huang, L.; Yuan, Z.; Xie, S. Enhanced treatment effects of tilmicosin against Staphylococcus aureus cow mastitis by self-assembly sodium alginate-chitosan nanogel. Pharmaceutics, 2019, 11(10), 524.
[http://dx.doi.org/10.3390/pharmaceutics11100524] [PMID: 31614726]
[9]
Algharib, S.A.; Dawood, A.; Zhou, K.; Chen, D.; Li, C.; Meng, K.; Maa, M.K.; Ahmed, S.; Huang, L.; Xie, S. Designing, structural determination and biological effects of rifaximin loaded chitosan- carboxymethyl chitosan nanogel. Carbohydr. Polym., 2020, 248, 116782.
[http://dx.doi.org/10.1016/j.carbpol.2020.116782] [PMID: 32919570]
[10]
Liang, Y.; He, J.; Guo, B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 2021, 15(8), 12687-12722.
[http://dx.doi.org/10.1021/acsnano.1c04206]
[11]
Wu, T.; Liao, W.; Wang, W.; Zhou, J.; Tan, W.; Xiang, W.; Zhang, J.; Guo, L.; Chen, T.; Ma, D.; Yu, W.; Cai, X. Genipin-crosslinked carboxymethyl chitosan nanogel for lung-targeted delivery of isoniazid and rifampin. Carbohydr. Polym., 2018, 197, 403-413.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.034] [PMID: 30007629]
[12]
Na, K.; Lee, E.S.; Bae, Y.H. Self-organized nanogels responding to tumor extracellular pH: pH-dependent drug release and in vitro cytotoxicity against MCF-7 cells. Bioconjug. Chem., 2007, 18(5), 1568-1574.
[http://dx.doi.org/10.1021/bc070052e] [PMID: 17688320]
[13]
Yang, H.N.; Park, J.S.; Jeon, S.Y.; Park, K.H. Carboxymethylcellulose (CMC) formed nanogels with branched poly(ethyleneimine) (bPEI) for inhibition of cytotoxicity in human MSCs as a gene delivery vehicles. Carbohydr. Polym., 2015, 122, 265-275.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.073] [PMID: 25817668]
[14]
Zhu, K.; Ye, T.; Liu, J.; Peng, Z.; Xu, S.; Lei, J.; Deng, H.; Li, B. Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int. J. Pharm., 2013, 441(1-2), 721-727.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.022] [PMID: 23089579]
[15]
Alkasir, R.; Liu, X.; Zahra, M.; Ferreri, M.; Su, J.; Han, B. Characteristics of Staphylococcus aureus small colony variant and its parent strain isolated from chronic mastitis at a dairy farm in Beijing, China. Microb. Drug Resist., 2013, 19(2), 138-145.
[http://dx.doi.org/10.1089/mdr.2012.0086] [PMID: 23140248]
[16]
Idowu, O.R.; Peggins, J.O. Simple, rapid determination of enrofloxacin and ciprofloxacin in bovine milk and plasma by high-performance liquid chromatography with fluorescence detection. J. Pharm. Biomed. Anal., 2004, 35(1), 143-153.
[http://dx.doi.org/10.1016/j.jpba.2004.01.006] [PMID: 15030889]
[17]
Luo, W.; Liu, J.; Zhang, S.; Song, W.; Algharib, S.A.; Chen, W. Enhanced antibacterial activity of tilmicosin against Staphylococcus aureus small colony variants by chitosan oligosaccharide-sodium carboxymethyl cellulose composite nanogels. J. Vet. Sci., 2022, 23(1), e1.
[http://dx.doi.org/10.4142/jvs.21208] [PMID: 34931502]
[18]
Luo, W.; Qin, H.; Chen, D.; Wu, M.; Meng, K.; Zhang, A.; Pan, Y.; Qu, W.; Xie, S. The dose regimen formulation of tilmicosin against Lawsonia intracellularis in pigs by pharmacokinetic-pharmacodynamic (PK-PD) model. Microb. Pathog., 2020, 147, 104389.
[http://dx.doi.org/10.1016/j.micpath.2020.104389] [PMID: 32707311]
[19]
Sahoo, S.; Chakraborti, C.; Naik, S.; Mishra, S.; Nanda, U.N. Structural analysis of ciprofloxacin-carbopol polymeric composites by x-ray diffraction and fourier transform infra-red spectroscopy. Trop. J. Pharm. Res., 2011, 10(3), 273-280.
[http://dx.doi.org/10.4314/tjpr.v10i3.14]
[20]
Khawaja, E.E.; Durrani, S.; Al-Adel, F.F.; Salim, M.A.; Hussain, M.S. X-ray photoelectron spectroscopy and fourier transform-infrared studies of transition metal phosphate glasses. J. Mater. Sci., 1995, 30(1), 225-234.
[http://dx.doi.org/10.1007/BF00352154]
[21]
Gong, Y.; Liu, Y.; Xiong, Z.; Zhao, D. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: Reaction mechanisms and effects of stabilizer and water chemistry. Environ. Sci. Technol., 2014, 48(7), 3986-3994.
[http://dx.doi.org/10.1021/es404418a] [PMID: 24568693]
[22]
Oh, J.K.; Drumright, R.; Siegwart, D.J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 2008, 33(4), 448-477.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.01.002]
[23]
Zhan, Y.; Wang, H.; Su, M.; Sun, Z.; He, P. Mesoporous silica and polymer hybrid nanogels for multistage delivery of an anticancer drug. J. Mater. Sci., 2021, 56(7), 1-13.
[http://dx.doi.org/10.1007/s10853-020-05576-5]
[24]
Xie, S.; Zhang, X.; Luo, W.; Meng, K.; Chen, D.; Pan, Y.; Tao, Y.; Huang, L.; Liu, Z.; Wang, Y.; Yuan, Z. Formulation, characterization and pharmacokinetics of long-acting ceftiofur hydrochloride suspension. Curr. Drug Deliv., 2021, 18(2), 224-233.
[http://dx.doi.org/10.1016/j.tvjl.2010.11.019]
[25]
Suci, P.A.; Mittelman, M.W.; Yu, F.P.; Geesey, G.G. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 1994, 38(9), 2125-2133.
[http://dx.doi.org/10.1128/AAC.38.9.2125] [PMID: 7811031]
[26]
Allwood, J.W.; Alrabiah, H.; Correa, E.; Vaughan, A.; Xu, Y.; Upton, M.; Goodacre, R. A workflow for bacterial metabolic fingerprinting and lipid profiling: Application to ciprofloxacin challenged Escherichia coli. Metabolomics, 2015, 11(2), 438-453.
[http://dx.doi.org/10.1007/s11306-014-0674-6]
[27]
Azadi, A.; Hamidi, M.; Rouini, M.R. Methotrexate-loaded chitosan nanogels as ‘Trojan Horses’ for drug delivery to brain: Preparation and in vitro/in vivo characterization. Int. J. Biol. Macromol., 2013, 62, 523-530.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.10.004] [PMID: 24120961]
[28]
Sadighian, S.; Hosseini-Monfared, H.; Rostamizadeh, K.; Hamidi, M. pH-Triggered Magnetic-Chitosan nanogels (MCNs) for doxorubicin delivery: Physically vs. chemically cross linking approach. Adv. Pharm. Bull., 2015, 5(1), 115-120.
[http://dx.doi.org/10.5681/apb.2015.016] [PMID: 25789228]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy