Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Role of Neuroglial Metabotropic Glutamate Receptors in Alzheimer’s Disease

Author(s): Khaled S. Abd-Elrahman*, Shaarika Sarasija and Stephen S.G. Ferguson*

Volume 21, Issue 2, 2023

Published on: 28 March, 2022

Page: [273 - 283] Pages: 11

DOI: 10.2174/1570159X19666210916102638

open access plus

Abstract

Glutamate, the major excitatory neurotransmitter in the brain exerts its effects via both ionotropic glutamate receptors and metabotropic glutamate receptors (mGluRs). There are three subgroups of mGluRs, pre-synaptic Group II and Group III mGluRs and post-synaptic Group I mGluRs. mGluRs are ubiquitously expressed in the brain and their activation is poised upstream of a myriad of signaling pathways, resulting in their implication in the pathogenesis of various neurodegenerative diseases including, Alzheimer’s Disease (AD). While the exact mechanism of AD etiology remains elusive, β-amyloid (Aβ) plaques and hyperphosphorylated tau tangles remain the histopathological hallmarks of AD. Though less electrically excitable, neuroglia are a major non-neuronal cell type in the brain and are composed of astrocytes, microglia, and oligodendrocytes. Astrocytes, microglia, and oligodendrocytes provide structural and metabolic support, active immune defence, and axonal support and sheathing, respectively. Interestingly, Aβ and hyperphosphorylated tau are known to disrupt the neuroglial homeostasis in the brain, pushing them towards a more neurotoxic state. In this review, we discuss what is currently known regarding the expression patterns of various mGluRs in neuroglia and how Aβ and tau alter the normal mGluR function in the neuroglia and contribute to the pathophysiology of AD.

Keywords: mGluR, GPCR, tau, amyloid beta, neurodegeneration, astrocytes, microglia, oligodendrocytes.

Graphical Abstract
[1]
Niswender, C.M.; Conn, P.J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol., 2010, 50(1), 295-322.
[http://dx.doi.org/10.1146/annurev.pharmtox.011008.145533] [PMID: 20055706]
[2]
Conn, P.J.; Pin, J-P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol., 1997, 37(1), 205-237.
[http://dx.doi.org/10.1146/annurev.pharmtox.37.1.205] [PMID: 9131252]
[3]
Pin, J-P.; Galvez, T.; Prézeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther., 2003, 98(3), 325-354.
[http://dx.doi.org/10.1016/S0163-7258(03)00038-X] [PMID: 12782243]
[4]
Magalhaes, A.C.; Dunn, H.; Ferguson, S.S. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br. J. Pharmacol., 2012, 165(6), 1717-1736.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01552.x] [PMID: 21699508]
[5]
Kunishima, N.; Shimada, Y.; Tsuji, Y.; Sato, T.; Yamamoto, M.; Kumasaka, T.; Nakanishi, S.; Jingami, H.; Morikawa, K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature, 2000, 407(6807), 971-977.
[http://dx.doi.org/10.1038/35039564] [PMID: 11069170]
[6]
Koehl, A.; Hu, H.; Feng, D.; Sun, B.; Zhang, Y.; Robertson, M.J.; Chu, M.; Kobilka, T.S.; Laeremans, T.; Steyaert, J.; Tarrasch, J.; Dutta, S.; Fonseca, R.; Weis, W.I.; Mathiesen, J.M.; Skiniotis, G.; Kobilka, B.K. Structural insights into the activation of metabotropic glutamate receptors. Nature, 2019, 566(7742), 79-84.
[http://dx.doi.org/10.1038/s41586-019-0881-4] [PMID: 30675062]
[7]
Rondard, P.; Pin, J-P. Dynamics and modulation of metabotropic glutamate receptors. Curr. Opin. Pharmacol., 2015, 20, 95-101.
[http://dx.doi.org/10.1016/j.coph.2014.12.001] [PMID: 25529199]
[8]
Ribeiro, F.M.; Paquet, M.; Cregan, S.P.; Ferguson, S.S.G.; Group, I. Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol. Disord. Drug Targets, 2010, 9(5), 574-595.
[http://dx.doi.org/10.2174/187152710793361612] [PMID: 20632969]
[9]
Abdul-Ghani, M.A.; Valiante, T.A.; Carlen, P.L.; Pennefather, P.S. Metabotropic glutamate receptors coupled to IP3 production mediate inhibition of IAHP in rat dentate granule neurons. J. Neurophysiol., 1996, 76(4), 2691-2700.
[http://dx.doi.org/10.1152/jn.1996.76.4.2691] [PMID: 8899638]
[10]
Dhami, G.K.; Ferguson, S.S.G. Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol. Ther., 2006, 111(1), 260-271.
[http://dx.doi.org/10.1016/j.pharmthera.2005.01.008] [PMID: 16574233]
[11]
Schoepp, D.D. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J. Pharmacol. Exp. Ther., 2001, 299(1), 12-20.
[PMID: 11561058]
[12]
Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology, 2011, 60(7-8), 1017-1041.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.022] [PMID: 21036182]
[13]
Ribeiro, F.M.; Vieira, L.B.; Pires, R.G.W.; Olmo, R.P.; Ferguson, S.S.G. Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol. Res., 2017, 115, 179-191.
[http://dx.doi.org/10.1016/j.phrs.2016.11.013] [PMID: 27872019]
[14]
Loane, D.J.; Stoica, B.A.; Faden, A.I. Metabotropic glutamate receptor-mediated signaling in neuroglia. Wiley Interdiscip. Rev. Membr. Transp. Signal., 2012, 1(2), 136-150.
[http://dx.doi.org/10.1002/wmts.30] [PMID: 22662309]
[15]
Hynd, M.R.; Scott, H.L.; Dodd, P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int., 2004, 45(5), 583-595.
[http://dx.doi.org/10.1016/j.neuint.2004.03.007] [PMID: 15234100]
[16]
Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch., 2010, 460(2), 525-542.
[http://dx.doi.org/10.1007/s00424-010-0809-1] [PMID: 20229265]
[17]
De Blasi, A.; Conn, P.J.; Pin, J.; Nicoletti, F. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol. Sci., 2001, 22(3), 114-120.
[http://dx.doi.org/10.1016/S0165-6147(00)01635-7] [PMID: 11239574]
[18]
Ferguson, S.S. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev., 2001, 53(1), 1-24.
[PMID: 11171937]
[19]
Ibrahim, K.S.; Abd-Elrahman, K.S.; El Mestikawy, S.; Ferguson, S.S.G. Targeting vesicular glutamate transporter machinery: implications on metabotropic glutamate receptor 5 signaling and behavior. Mol. Pharmacol., 2020, 98(4), 314-327.
[http://dx.doi.org/10.1124/molpharm.120.000089] [PMID: 32873747]
[20]
Tu, J.C.; Xiao, B.; Naisbitt, S.; Yuan, J.P.; Petralia, R.S.; Brakeman, P.; Doan, A.; Aakalu, V.K.; Lanahan, A.A.; Sheng, M.; Worley, P.F. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron, 1999, 23(3), 583-592.
[http://dx.doi.org/10.1016/S0896-6273(00)80810-7] [PMID: 10433269]
[21]
Husi, H.; Ward, M.A.; Choudhary, J.S.; Blackstock, W.P.; Grant, S.G.N. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci., 2000, 3(7), 661-669.
[http://dx.doi.org/10.1038/76615] [PMID: 10862698]
[22]
Um, J.W.; Kaufman, A.C.; Kostylev, M.; Heiss, J.K.; Stagi, M.; Takahashi, H.; Kerrisk, M.E.; Vortmeyer, A.; Wisniewski, T.; Koleske, A.J.; Gunther, E.C.; Nygaard, H.B.; Strittmatter, S.M. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron, 2013, 79(5), 887-902.
[http://dx.doi.org/10.1016/j.neuron.2013.06.036] [PMID: 24012003]
[23]
Banko, J.L.; Hou, L.; Poulin, F.; Sonenberg, N.; Klann, E. Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J. Neurosci., 2006, 26(8), 2167-2173.
[http://dx.doi.org/10.1523/JNEUROSCI.5196-05.2006] [PMID: 16495443]
[24]
Stoppel, L.J. Auerbach, B.D.; Senter, R.K.; Preza, A.R.; Lefkowitz, R.J.; Bear, M.F. β-Arrestin2 couples metabotropic glutamate receptor 5 to neuronal protein synthesis and is a potential target to treat fragile X. Cell Rep., 2017, 18(12), 2807-2814.
[http://dx.doi.org/10.1016/j.celrep.2017.02.075] [PMID: 28329674]
[25]
Ibrahim, K.S.; McLaren, C.J.; Abd-Elrahman, K.S.; Ferguson, S.S.G. Optineurin deletion disrupts metabotropic glutamate receptor 5-mediated regulation of ERK1/2, GSK3β/ZBTB16, mTOR/ULK1 signaling in autophagy. Biochem. Pharmacol., 2021, 185, 114427.
[http://dx.doi.org/10.1016/j.bcp.2021.114427] [PMID: 33513340]
[26]
Hou, L.; Klann, E. Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J. Neurosci., 2004, 24(28), 6352-6361.
[http://dx.doi.org/10.1523/JNEUROSCI.0995-04.2004] [PMID: 15254091]
[27]
Abd-Elrahman, K.S.; Ferguson, S.S.G. Modulation of mTOR and CREB pathways following mGluR5 blockade contribute to improved Huntington’s pathology in zQ175 mice. Mol. Brain, 2019, 12(1), 35.
[http://dx.doi.org/10.1186/s13041-019-0456-1] [PMID: 30961637]
[28]
Abd-Elrahman, K.S.; Hamilton, A.; Vasefi, M.; Ferguson, S.S.G. Autophagy is increased following either pharmacological or genetic silencing of mGluR5 signaling in Alzheimer’s disease mouse models. Mol. Brain, 2018, 11(1), 19.
[http://dx.doi.org/10.1186/s13041-018-0364-9] [PMID: 29631635]
[29]
Abd-Elrahman, K.S.; Hamilton, A.; Albaker, A.; Ferguson, S.S.G. mGluR5 contribution to neuropathology in Alzheimer mice is disease stage-dependent. ACS Pharmacol. Transl. Sci., 2020, 3(2), 334-344.
[http://dx.doi.org/10.1021/acsptsci.0c00013] [PMID: 32296772]
[30]
Abd-Elrahman, K.S. Albaker, A.; de Souza, J.M.; Ribeiro, F.M.; Schlossmacher, M.G.; Tiberi, M.; Hamilton, A.; Ferguson, S.S.G. Aβ oligomers induce pathophysiological mGluR5 signaling in Alzheimer’s disease model mice in a sex-selective manner. Sci. Signal., 2020, 13(662), eabd2494.
[http://dx.doi.org/10.1126/scisignal.abd2494] [PMID: 33323410]
[31]
Abd-Elrahman, K.S.; Hamilton, A.; Hutchinson, S.R.; Liu, F.; Russell, R.C.; Ferguson, S.S.G. mGluR5 antagonism increases autophagy and prevents disease progression in the zQ175 mouse model of Huntington’s disease. Sci. Signal., 2017, 10(510), eaan6387.
[http://dx.doi.org/10.1126/scisignal.aan6387] [PMID: 29259100]
[32]
Iacovelli, L.; Bruno, V.; Salvatore, L.; Melchiorri, D.; Gradini, R.; Caricasole, A.; Barletta, E.; De Blasi, A.; Nicoletti, F. Native group-III metabotropic glutamate receptors are coupled to the mitogen-activated protein kinase/phosphatidylinositol-3-kinase pathways. J. Neurochem., 2002, 82(2), 216-223.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00929.x] [PMID: 12124422]
[33]
Lin, C.H.; You, J.R.; Wei, K.C.; Gean, P.W. Stimulating ERK/PI3K/NFκB signaling pathways upon activation of mGluR2/3 restores OGD-induced impairment in glutamate clearance in astrocytes. Eur. J. Neurosci., 2014, 39(1), 83-96.
[http://dx.doi.org/10.1111/ejn.12383] [PMID: 24206109]
[34]
Li, S. H.; Colson, T.-L. L.; Abd-Elrahman, K. S.; Ferguson, S. S. G. MGluR2/3 activation improves motor performance and reduces pathology in heterozygous ZQ175 Huntington’s Disease mice. J. Pharmacol. Exp. Ther., 2021, JPET-AR-2021-000735.
[35]
Beal, M.F. Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol., 1998, 44(3)(Suppl. 1), S110-S114.
[http://dx.doi.org/10.1002/ana.410440716] [PMID: 9749581]
[36]
Farmer, K.; Abd-Elrahman, K.S.; Derksen, A.; Rowe, E.M.; Thompson, A.M.; Rudyk, C.A.; Prowse, N.A.; Dwyer, Z.; Bureau, S.C.; Fortin, T.; Ferguson, S.S.G.; Hayley, S. mGluR5 allosteric modulation promotes neurorecovery in a 6-OHDA-toxicant model of Parkinson’s Disease. Mol. Neurobiol., 2020, 57(3), 1418-1431.
[http://dx.doi.org/10.1007/s12035-019-01818-z] [PMID: 31754998]
[37]
Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science, 2006, 314(5800), 777-781.
[http://dx.doi.org/10.1126/science.1132814] [PMID: 17082447]
[38]
2021 Alzheimer’s disease facts and figures. Alzheimers Dement., 2021, 17(3), 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[39]
Butterfield, D.A. Perspectives on oxidative stress in alzheimer’s disease and predictions of future research emphases. J. Alzheimers Dis., 2018, 64(s1), S469-S479.
[http://dx.doi.org/10.3233/JAD-179912] [PMID: 29504538]
[40]
Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016, 147, 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005] [PMID: 27769868]
[41]
Santos, J.R.; Gois, A.M.; Mendonça, D.M.; Freire, M.A. Nutritional status, oxidative stress and dementia: the role of selenium in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 206.
[http://dx.doi.org/10.3389/fnagi.2014.00206] [PMID: 25221506]
[42]
Puzzo, D.; Privitera, L.; Fa’, M.; Staniszewski, A.; Hashimoto, G.; Aziz, F.; Sakurai, M.; Ribe, E.M.; Troy, C.M.; Mercken, M.; Jung, S.S.; Palmeri, A.; Arancio, O. Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann. Neurol., 2011, 69(5), 819-830.
[http://dx.doi.org/10.1002/ana.22313] [PMID: 21472769]
[43]
Sengupta, U.; Nilson, A.N.; Kayed, R. The Role of Amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine, 2016, 6, 42-49.
[http://dx.doi.org/10.1016/j.ebiom.2016.03.035] [PMID: 27211547]
[44]
Panza, F.; Lozupone, M.; Logroscino, G.; Imbimbo, B.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2019, 15(2), 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[45]
Bishop, G.M.; Robinson, S.R. Physiological roles of amyloid-β and implications for its removal in Alzheimer’s disease. Drugs Aging, 2004, 21(10), 621-630.
[http://dx.doi.org/10.2165/00002512-200421100-00001] [PMID: 15287821]
[46]
Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci., 2016, 17(1), 5-21.
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[47]
Polanco, J.C.; Li, C.; Bodea, L-G.; Martinez-Marmol, R.; Meunier, F.A.; Götz, J. Amyloid-β and tau complexity - towards improved biomarkers and targeted therapies. Nat. Rev. Neurol., 2018, 14(1), 22-39.
[http://dx.doi.org/10.1038/nrneurol.2017.162] [PMID: 29242522]
[48]
Noble, W.; Hanger, D.P.; Miller, C.C.J.; Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol., 2013, 4, 83.
[http://dx.doi.org/10.3389/fneur.2013.00083] [PMID: 23847585]
[49]
von Bartheld, C.S.; Bahney, J.; Herculano-Houzel, S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J. Comp. Neurol., 2016, 524(18), 3865-3895.
[http://dx.doi.org/10.1002/cne.24040] [PMID: 27187682]
[50]
Heneka, M.T.; Rodríguez, J.J.; Verkhratsky, A. Neuroglia in neurodegeneration. Brain Res. Brain Res. Rev., 2010, 63(1-2), 189-211.
[http://dx.doi.org/10.1016/j.brainresrev.2009.11.004] [PMID: 19944719]
[51]
Byrnes, K.R.; Loane, D.J.; Faden, A.I. Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics, 2009, 6(1), 94-107.
[http://dx.doi.org/10.1016/j.nurt.2008.10.038] [PMID: 19110202]
[52]
Kim, E.; Otgontenger, U.; Jamsranjav, A.; Kim, S.S. Deleterious alteration of glia in the brain of Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(18), 6676.
[http://dx.doi.org/10.3390/ijms21186676] [PMID: 32932623]
[53]
Jäkel, S.; Dimou, L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front. Cell. Neurosci., 2017, 11, 24.
[http://dx.doi.org/10.3389/fncel.2017.00024] [PMID: 28243193]
[54]
Siracusa, R.; Fusco, R.; Cuzzocrea, S. Astrocytes: role and functions in brain pathologies. Front. Pharmacol., 2019, 10, 1114.
[http://dx.doi.org/10.3389/fphar.2019.01114] [PMID: 31611796]
[55]
Kimelberg, H.K.; Nedergaard, M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics, 2010, 7(4), 338-353.
[http://dx.doi.org/10.1016/j.nurt.2010.07.006] [PMID: 20880499]
[56]
Spampinato, S.F.; Copani, A.; Nicoletti, F.; Sortino, M.A.; Caraci, F. Metabotropic glutamate receptors in glial cells: A new potential target for neuroprotection? Front. Mol. Neurosci., 2018, 11, 414.
[http://dx.doi.org/10.3389/fnmol.2018.00414] [PMID: 30483053]
[57]
Pekny, M.; Pekna, M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol. Rev., 2014, 94(4), 1077-1098.
[http://dx.doi.org/10.1152/physrev.00041.2013] [PMID: 25287860]
[58]
Choi, M.; Lee, S-M.; Kim, D. Im, H.-I.; Kim, H.-S.; Jeong, Y.H. Disruption of the astrocyte-neuron interaction is responsible for the impairments in learning and memory in 5XFAD mice: an Alzheimer’s disease animal model. Mol. Brain, 2021, 14(1), 1-5.
[http://dx.doi.org/10.1186/s13041-020-00716-z] [PMID: 33402211]
[59]
Cai, Z.; Schools, G.P.; Kimelberg, H.K. Metabotropic glutamate receptors in acutely isolated hippocampal astrocytes: developmental changes of mGluR5 mRNA and functional expression. Glia, 2000, 29(1), 70-80.
[http://dx.doi.org/10.1002/(SICI)1098-1136(20000101)29:1<70::AID-GLIA7>3.0.CO;2-V] [PMID: 10594924]
[60]
Silva, G.A.; Theriault, E.; Mills, L.R.; Pennefather, P.S.; Feeney, C.J. Group I and II metabotropic glutamate receptor expression in cultured rat spinal cord astrocytes. Neurosci. Lett., 1999, 263(2-3), 117-120.
[http://dx.doi.org/10.1016/S0304-3940(99)00145-7] [PMID: 10213149]
[61]
Sun, W.; McConnell, E.; Pare, J.F.; Xu, Q.; Chen, M.; Peng, W.; Lovatt, D.; Han, X.; Smith, Y.; Nedergaard, M. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science, 2013, 339(6116), 197-200.
[http://dx.doi.org/10.1126/science.1226740] [PMID: 23307741]
[62]
Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; Deng, S.; Liddelow, S.A.; Zhang, C.; Daneman, R.; Maniatis, T.; Barres, B.A.; Wu, J.Q. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci., 2014, 34(36), 11929-11947.
[http://dx.doi.org/10.1523/JNEUROSCI.1860-14.2014] [PMID: 25186741]
[63]
Bruno, V.; Battaglia, G.; Casabona, G.; Copani, A.; Caciagli, F.; Nicoletti, F. Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-β. J. Neurosci., 1998, 18(23), 9594-9600.
[http://dx.doi.org/10.1523/JNEUROSCI.18-23-09594.1998] [PMID: 9822720]
[64]
Geurts, J.J.G.; Wolswijk, G.; Bö, L.; Redeker, S.; Ramkema, M.; Troost, D.; Aronica, E. Expression patterns of Group III metabotropic glutamate receptors mGluR4 and mGluR8 in multiple sclerosis lesions. J. Neuroimmunol., 2005, 158(1-2), 182-190.
[http://dx.doi.org/10.1016/j.jneuroim.2004.08.012] [PMID: 15589052]
[65]
Rebeck, G.W. Hoe, H.S.; Moussa, C.E.H. β-amyloid1-42 gene transfer model exhibits intraneuronal amyloid, gliosis, tau phosphorylation, and neuronal loss. J. Biol. Chem., 2010, 285(10), 7440-7446.
[http://dx.doi.org/10.1074/jbc.M109.083915] [PMID: 20071340]
[66]
Serrano-Pozo, A.; Mielke, M.L.; Gómez-Isla, T.; Betensky, R.A.; Growdon, J.H.; Frosch, M.P.; Hyman, B.T. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am. J. Pathol., 2011, 179(3), 1373-1384.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.047] [PMID: 21777559]
[67]
Iyer, A.M.; van Scheppingen, J.; Milenkovic, I.; Anink, J.J.; Lim, D.; Genazzani, A.A.; Adle-Biassette, H.; Kovacs, G.G.; Aronica, E. Metabotropic glutamate receptor 5 in Down’s syndrome hippocampus during development: increased expression in astrocytes. Curr. Alzheimer Res., 2014, 11(7), 694-705.
[http://dx.doi.org/10.2174/1567205011666140812115423] [PMID: 25115540]
[68]
Shrivastava, A.N. Kowalewski, J.M.; Renner, M.; Bousset, L.; Koulakoff, A.; Melki, R.; Giaume, C.; Triller, A. β-amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 receptors. Glia, 2013, 61(10), 1673-1686.
[http://dx.doi.org/10.1002/glia.22548] [PMID: 23922225]
[69]
Grolla, A.A.; Sim, J.A.; Lim, D.; Rodriguez, J.J.; Genazzani, A.A.; Verkhratsky, A. Amyloid-β and Alzheimer’s disease type pathology differentially affects the calcium signalling toolkit in astrocytes from different brain regions. Cell Death Dis., 2013, 4(5), e623.
[http://dx.doi.org/10.1038/cddis.2013.145] [PMID: 23661001]
[70]
Casley, C.S.; Lakics, V.; Lee, H.G.; Broad, L.M.; Day, T.A.; Cluett, T.; Smith, M.A.; O’Neill, M.J.; Kingston, A.E. Up-regulation of astrocyte metabotropic glutamate receptor 5 by amyloid-β peptide. Brain Res., 2009, 1260, 65-75.
[http://dx.doi.org/10.1016/j.brainres.2008.12.082] [PMID: 19401173]
[71]
Renner, M.; Lacor, P.N.; Velasco, P.T.; Xu, J.; Contractor, A.; Klein, W.L.; Triller, A. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron, 2010, 66(5), 739-754.
[http://dx.doi.org/10.1016/j.neuron.2010.04.029] [PMID: 20547131]
[72]
Hamilton, A.; Vasefi, M.; Vander Tuin, C.; McQuaid, R.J.; Anisman, H.; Ferguson, S.S.G. Chronic pharmacological mGluR5 inhibition prevents cognitive impairment and reduces pathogenesis in an Alzheimer disease mouse model. Cell Rep., 2016, 15(9), 1859-1865.
[http://dx.doi.org/10.1016/j.celrep.2016.04.077] [PMID: 27210751]
[73]
Jean, Y.Y.; Lercher, L.D.; Dreyfus, C.F. Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol., 2008, 4(1), 35-42.
[http://dx.doi.org/10.1017/S1740925X09000052] [PMID: 19267952]
[74]
Thibault, O.; Gant, J.C.; Landfield, P.W. Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell, 2007, 6(3), 307-317.
[http://dx.doi.org/10.1111/j.1474-9726.2007.00295.x] [PMID: 17465978]
[75]
Simpson, J.E.; Ince, P.G.; Shaw, P.J.; Heath, P.R.; Raman, R.; Garwood, C.J.; Gelsthorpe, C.; Baxter, L.; Forster, G.; Matthews, F.E.; Brayne, C.; Wharton, S.B. Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype. Neurobiol. Aging, 2011, 32(10), 1795-1807.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.04.013] [PMID: 21705112]
[76]
Lim, D.; Iyer, A.; Ronco, V.; Grolla, A.A.; Canonico, P.L.; Aronica, E.; Genazzani, A.A. Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia, 2013, 61(7), 1134-1145.
[http://dx.doi.org/10.1002/glia.22502] [PMID: 23616440]
[77]
Mohmmad Abdul, H.; Baig, I.; Levine, H., III; Guttmann, R.P.; Norris, C.M. Proteolysis of calcineurin is increased in human hippocampus during mild cognitive impairment and is stimulated by oligomeric Abeta in primary cell culture. Aging Cell, 2011, 10(1), 103-113.
[http://dx.doi.org/10.1111/j.1474-9726.2010.00645.x] [PMID: 20969723]
[78]
Alagarsamy, S.; Saugstad, J.; Warren, L.; Mansuy, I. M.; Gereau, R. W.; Conn, P. J. NMDA-induced potentiation of MGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology, 2005, 49 Suppl 1(01), 135-145.
[79]
Mincheva-Tasheva, S. Soler, R.M. NF-κB signaling pathways: role in nervous system physiology and pathology. Neuroscientist, 2013, 19(2), 175-194.
[http://dx.doi.org/10.1177/1073858412444007] [PMID: 22785105]
[80]
Shah, A.; Silverstein, P.S.; Singh, D.P.; Kumar, A. Involvement of metabotropic glutamate receptor 5, AKT/PI3K signaling and NF-κB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes. J. Neuroinflammation, 2012, 9, 52.
[http://dx.doi.org/10.1186/1742-2094-9-52] [PMID: 22420994]
[81]
Durand, D.; Carniglia, L.; Beauquis, J.; Caruso, C.; Saravia, F.; Lasaga, M. Astroglial mGlu3 receptors promote alpha-secretase-mediated amyloid precursor protein cleavage. Neuropharmacology, 2014, 79, 180-189.
[http://dx.doi.org/10.1016/j.neuropharm.2013.11.015] [PMID: 24291464]
[82]
Caraci, F.; Molinaro, G.; Battaglia, G.; Giuffrida, M.L.; Riozzi, B.; Traficante, A.; Bruno, V.; Cannella, M.; Merlo, S.; Wang, X.; Heinz, B.A.; Nisenbaum, E.S.; Britton, C.; Drago, F.; Sortino, A.; Copani, A.; Nicoletti, F. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Mol. Pharmacol., 2011, 79(3), 618-626.
[http://dx.doi.org/10.1124/mol.110.067488] [PMID: 21159998]
[83]
Durand, D.; Turati, J.; Rudi, M.J.; Ramírez, D.; Saba, J.; Caruso, C.; Carniglia, L.; von Bernhardi, R.; Lasaga, M. Unraveling the β-amyloid clearance by astrocytes: Involvement of metabotropic glutamate receptor 3, sAPPα and class-A scavenger receptor. Neurochem. Int., 2019, 131, 104547.
[http://dx.doi.org/10.1016/j.neuint.2019.104547] [PMID: 31536785]
[84]
Durand, D.; Carniglia, L.; Turati, J.; Ramírez, D.; Saba, J.; Caruso, C.; Lasaga, M. Amyloid-beta neurotoxicity and clearance are both regulated by glial group II metabotropic glutamate receptors. Neuropharmacology, 2017, 123, 274-286.
[http://dx.doi.org/10.1016/j.neuropharm.2017.05.008] [PMID: 28495373]
[85]
Nagahara, A.H.; Merrill, D.A.; Coppola, G.; Tsukada, S.; Schroeder, B.E.; Shaked, G.M.; Wang, L.; Blesch, A.; Kim, A.; Conner, J.M.; Rockenstein, E.; Chao, M.V.; Koo, E.H.; Geschwind, D.; Masliah, E.; Chiba, A.A.; Tuszynski, M.H. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med., 2009, 15(3), 331-337.
[http://dx.doi.org/10.1038/nm.1912] [PMID: 19198615]
[86]
Planas-Fontánez, T.M.; Dreyfus, C.F.; Saitta, K.S. Reactive astrocytes as therapeutic targets for brain degenerative diseases: roles played by metabotropic glutamate receptors. Neurochem. Res., 2020, 45(3), 541-550.
[http://dx.doi.org/10.1007/s11064-020-02968-6] [PMID: 31983009]
[87]
Caraci, F.; Spampinato, S.F.; Morgese, M.G.; Tascedda, F.; Salluzzo, M.G.; Giambirtone, M.C.; Caruso, G.; Munafò, A.; Torrisi, S.A.; Leggio, G.M.; Trabace, L.; Nicoletti, F.; Drago, F.; Sortino, M.A.; Copani, A. Neurobiological links between depression and AD: The role of TGF-β1 signaling as a new pharmacological target. Pharmacol. Res., 2018, 130, 374-384.
[http://dx.doi.org/10.1016/j.phrs.2018.02.007] [PMID: 29438781]
[88]
Matos, M.; Augusto, E.; Oliveira, C.R.; Agostinho, P. Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience, 2008, 156(4), 898-910.
[http://dx.doi.org/10.1016/j.neuroscience.2008.08.022] [PMID: 18790019]
[89]
Yao, H.H.; Ding, J.H.; Zhou, F.; Wang, F.; Hu, L.F.; Sun, T.; Hu, G. Enhancement of glutamate uptake mediates the neuroprotection exerted by activating group II or III metabotropic glutamate receptors on astrocytes. J. Neurochem., 2005, 92(4), 948-961.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02937.x] [PMID: 15686497]
[90]
Rodriguez-Kern, A.; Gegelashvili, M.; Schousboe, A.; Zhang, J.; Sung, L.; Gegelashvili, G. Beta-amyloid and brain-derived neurotrophic factor, BDNF, up-regulate the expression of glutamate transporter GLT-1/EAAT2 via different signaling pathways utilizing transcription factor NF-kappaB. Neurochem. Int., 2003, 43(4-5), 363-370.
[http://dx.doi.org/10.1016/S0197-0186(03)00023-8] [PMID: 12742080]
[91]
Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front. Cell. Neurosci., 2018, 12, 488.
[http://dx.doi.org/10.3389/fncel.2018.00488] [PMID: 30618635]
[92]
Dansokho, C.; Heneka, M.T. Neuroinflammatory responses in Alzheimer’s disease. J. Neural Transm. (Vienna), 2018, 125(5), 771-779.
[http://dx.doi.org/10.1007/s00702-017-1831-7] [PMID: 29273951]
[93]
Fernandes, A.; Miller-Fleming, L.; Pais, T.F. Microglia and inflammation: conspiracy, controversy or control? Cell. Mol. Life Sci., 2014, 71(20), 3969-3985.
[http://dx.doi.org/10.1007/s00018-014-1670-8] [PMID: 25008043]
[94]
Taylor, D.L.; Diemel, L.T.; Cuzner, M.L.; Pocock, J.M. Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer’s disease. J. Neurochem., 2002, 82(5), 1179-1191.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01062.x] [PMID: 12358765]
[95]
Geurts, J.J.G.; Wolswijk, G.; Bö, L.; van der Valk, P.; Polman, C.H.; Troost, D.; Aronica, E. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain, 2003, 126(Pt 8), 1755-1766.
[http://dx.doi.org/10.1093/brain/awg179] [PMID: 12805104]
[96]
Taylor, D.L.; Diemel, L.T.; Pocock, J.M. Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J. Neurosci., 2003, 23(6), 2150-2160.
[http://dx.doi.org/10.1523/JNEUROSCI.23-06-02150.2003] [PMID: 12657674]
[97]
Carvalho, T.G.; Alves-Silva, J.; de Souza, J.M.; Real, A.L.C.V.; Doria, J.G.; Vieira, E.L.M.; Gomes, G.F.; de Oliveira, A.C.; Miranda, A.S.; Ribeiro, F.M. Metabotropic glutamate receptor 5 ablation accelerates age-related neurodegeneration and neuroinflammation. Neurochem. Int., 2019, 126, 218-228.
[http://dx.doi.org/10.1016/j.neuint.2019.03.020] [PMID: 30930274]
[98]
Zhang, Y-N.; Fan, J-K.; Gu, L.; Yang, H-M.; Zhan, S-Q.; Zhang, H. Metabotropic glutamate receptor 5 inhibits α-synuclein-induced microglia inflammation to protect from neurotoxicity in Parkinson’s disease. J. Neuroinflammation, 2021, 18(1), 23.
[http://dx.doi.org/10.1186/s12974-021-02079-1] [PMID: 33461598]
[99]
Loane, D.J.; Stoica, B.A.; Byrnes, K.R.; Jeong, W.; Faden, A.I. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J. Neurotrauma, 2013, 30(5), 403-412.
[http://dx.doi.org/10.1089/neu.2012.2589] [PMID: 23199080]
[100]
Wang, J-W.; Wang, H-D.; Cong, Z-X.; Zhang, X-S.; Zhou, X-M.; Zhang, D-D. Activation of metabotropic glutamate receptor 5 reduces the secondary brain injury after traumatic brain injury in rats. Biochem. Biophys. Res. Commun., 2013, 430(3), 1016-1021.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.046] [PMID: 23261470]
[101]
Bonifacino, T.; Cattaneo, L.; Gallia, E.; Puliti, A.; Melone, M.; Provenzano, F.; Bossi, S.; Musante, I.; Usai, C.; Conti, F.; Bonanno, G.; Milanese, M. In-vivo effects of knocking-down metabotropic glutamate receptor 5 in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neuropharmacology, 2017, 123, 433-445.
[http://dx.doi.org/10.1016/j.neuropharm.2017.06.020] [PMID: 28645622]
[102]
Milanese, M.; Bonifacino, T.; Torazza, C.; Provenzano, F.; Kumar, M.; Ravera, S.; Zerbo, A.R.; Frumento, G.; Balbi, M.; Nguyen, T.P.N.; Bertola, N.; Ferrando, S.; Viale, M.; Profumo, A.; Bonanno, G. Blocking glutamate mGlu5 receptors with the negative allosteric modulator CTEP improves disease course in SOD1G93A mouse model of amyotrophic lateral sclerosis. Br. J. Pharmacol., 2021, 178(18), 3747-3764.
[http://dx.doi.org/10.1111/bph.15515] [PMID: 33931856]
[103]
Ruan, L.; Kang, Z.; Pei, G.; Le, Y. Amyloid deposition and inflammation in APPswe/PS1dE9 mouse model of Alzheimer’s disease. Curr. Alzheimer Res., 2009, 6(6), 531-540.
[http://dx.doi.org/10.2174/156720509790147070] [PMID: 19747158]
[104]
Dani, M.; Wood, M.; Mizoguchi, R.; Fan, Z.; Walker, Z.; Morgan, R.; Hinz, R.; Biju, M.; Kuruvilla, T.; Brooks, D.J.; Edison, P. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain, 2018, 141(9), 2740-2754.
[http://dx.doi.org/10.1093/brain/awy188] [PMID: 30052812]
[105]
Paresce, D.M.; Chung, H.; Maxfield, F.R. Slow degradation of aggregates of the Alzheimer’s disease amyloid beta-protein by microglial cells. J. Biol. Chem., 1997, 272(46), 29390-29397.
[http://dx.doi.org/10.1074/jbc.272.46.29390] [PMID: 9361021]
[106]
Hemonnot, A.L.; Hua, J.; Ulmann, L.; Hirbec, H. Microglia in Alzheimer disease: well-known targets and new opportunities. Front. Aging Neurosci., 2019, 11, 233.
[http://dx.doi.org/10.3389/fnagi.2019.00233] [PMID: 31543810]
[107]
Navarro, V.; Sanchez-Mejias, E.; Jimenez, S.; Muñoz-Castro, C.; Sanchez-Varo, R.; Davila, J.C.; Vizuete, M.; Gutierrez, A.; Vitorica, J. Microglia in Alzheimer’s disease: Activated, dysfunctional or degenerative. Front. Aging Neurosci., 2018, 10, 140.
[http://dx.doi.org/10.3389/fnagi.2018.00140] [PMID: 29867449]
[108]
Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716.
[http://dx.doi.org/10.1126/science.aad8373] [PMID: 27033548]
[109]
Barger, S.W.; Basile, A.S. Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J. Neurochem., 2001, 76(3), 846-854.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00075.x] [PMID: 11158256]
[110]
Byrnes, K.R.; Stoica, B.; Loane, D.J.; Riccio, A.; Davis, M.I.; Faden, A.I. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia, 2009, 57(5), 550-560.
[http://dx.doi.org/10.1002/glia.20783] [PMID: 18816644]
[111]
Byrnes, K.R.; Stoica, B.; Riccio, A.; Pajoohesh-Ganji, A.; Loane, D.J.; Faden, A.I. Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents. Ann. Neurol., 2009, 66(1), 63-74.
[http://dx.doi.org/10.1002/ana.21673] [PMID: 19670441]
[112]
Bellozi, P.M.Q.; Gomes, G.F.; da Silva, M.C.M.; Lima, I.V.A.; Batista, C.R.Á.; Carneiro, Junior, W.O.; Dória, J.G.; Vieira, É.L.M.; Vieira, R.P.; de Freitas, R.P.; Ferreira, C.N.; Candelario-Jalil, E.; Wyss-Coray, T.; Ribeiro, F.M.; de Oliveira, A.C.P. A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer’s disease. Neuropharmacology, 2019, 160, 107785.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107785] [PMID: 31541651]
[113]
Ye, X.; Yu, L.; Zuo, D.; Zhang, L.; Zu, J.; Hu, J.; Tang, J.; Bao, L.; Cui, C.; Zhang, R.; Jin, G.; Zan, K.; Zhang, Z.; Yang, X.; Shi, H.; Zhang, Z.; Xiao, Q.; Liu, Y.; Xiang, J.; Zhang, X.; Cui, G. Activated mGluR5 protects BV2 cells against OGD/R induced cytotoxicity by modulating BDNF-TrkB pathway. Neurosci. Lett., 2017, 654, 70-79.
[http://dx.doi.org/10.1016/j.neulet.2017.06.029] [PMID: 28642149]
[114]
Chantong, B.; Kratschmar, D.V.; Lister, A.; Odermatt, A. Inhibition of metabotropic glutamate receptor 5 induces cellular stress through pertussis toxin-sensitive Gi-proteins in murine BV-2 microglia cells. J. Neuroinflammation, 2014, 11, 190.
[http://dx.doi.org/10.1186/s12974-014-0190-7] [PMID: 25407356]
[115]
Pascual, O.; Ben Achour, S.; Rostaing, P.; Triller, A.; Bessis, A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. USA, 2012, 109(4), E197-E205.
[http://dx.doi.org/10.1073/pnas.1111098109] [PMID: 22167804]
[116]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[117]
Bie, B.; Wu, J.; Foss, J.F.; Naguib, M. Activation of mGluR1 mediates C1q-dependent microglial phagocytosis of glutamatergic synapses in Alzheimer’s rodent models. Mol. Neurobiol., 2019, 56(8), 5568-5585.
[http://dx.doi.org/10.1007/s12035-019-1467-8] [PMID: 30652266]
[118]
Taylor, D.L.; Jones, F.; Kubota, E.S.; Pocock, J.M. Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor α-induced neurotoxicity in concert with microglial-derived Fas ligand. J. Neurosci., 2005, 25(11), 2952-2964.
[http://dx.doi.org/10.1523/JNEUROSCI.4456-04.2005] [PMID: 15772355]
[119]
Pinteaux-Jones, F.; Sevastou, I.G.; Fry, V.A.H.; Heales, S.; Baker, D.; Pocock, J.M. Myelin-induced microglial neurotoxicity can be controlled by microglial metabotropic glutamate receptors. J. Neurochem., 2008, 106(1), 442-454.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05426.x] [PMID: 18419765]
[120]
Ponnazhagan, R.; Harms, A.S.; Thome, A.D.; Jurkuvenaite, A.; Gogliotti, R.; Niswender, C.M.; Conn, P.J.; Standaert, D.G. The metabotropic glutamate receptor 4 positive allosteric modulator ADX88178 inhibits inflammatory responses in primary microglia. J. Neuroimmune Pharmacol., 2016, 11(2), 231-237.
[http://dx.doi.org/10.1007/s11481-016-9655-z] [PMID: 26872456]
[121]
Bradl, M.; Lassmann, H. Oligodendrocytes: biology and pathology. Acta Neuropathol., 2010, 119(1), 37-53.
[http://dx.doi.org/10.1007/s00401-009-0601-5] [PMID: 19847447]
[122]
Duncan, G.J.; Simkins, T.J.; Emery, B. Neuron-oligodendrocyte interactions in the structure and integrity of axons. Front. Cell Dev. Biol., 2021, 9, 653101.
[http://dx.doi.org/10.3389/fcell.2021.653101] [PMID: 33763430]
[123]
Deng, W.; Wang, H.; Rosenberg, P.A.; Volpe, J.J.; Jensen, F.E. Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc. Natl. Acad. Sci. USA, 2004, 101(20), 7751-7756.
[http://dx.doi.org/10.1073/pnas.0307850101] [PMID: 15136737]
[124]
Luyt, K.; Váradi, A.; Durant, C.F.; Molnár, E. Oligodendroglial metabotropic glutamate receptors are developmentally regulated and involved in the prevention of apoptosis. J. Neurochem., 2006, 99(2), 641-656.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04103.x] [PMID: 16836654]
[125]
Jantzie, L.L.; Talos, D.M.; Selip, D.B.; An, L.; Jackson, M.C.; Folkerth, R.D.; Deng, W.; Jensen, F.E. Developmental regulation of group I metabotropic glutamate receptors in the premature brain and their protective role in a rodent model of periventricular leukomalacia. Neuron Glia Biol., 2010, 6(4), 277-288.
[http://dx.doi.org/10.1017/S1740925X11000111] [PMID: 22169210]
[126]
Nasrabady, S.E.; Rizvi, B.; Goldman, J.E.; Brickman, A.M. White matter changes in Alzheimer’s disease: A focus on myelin and oligodendrocytes. Acta Neuropathol. Commun., 2018, 6(1), 22.
[http://dx.doi.org/10.1186/s40478-018-0515-3] [PMID: 29499767]
[127]
Desai, M.K.; Guercio, B.J.; Narrow, W.C.; Bowers, W.J. An Alzheimer’s disease-relevant presenilin-1 mutation augments amyloid-beta-induced oligodendrocyte dysfunction. Glia, 2011, 59(4), 627-640.
[http://dx.doi.org/10.1002/glia.21131] [PMID: 21294162]
[128]
Jantaratnotai, N.; Ryu, J.K.; Kim, S.U.; McLarnon, J.G. Amyloid β peptide-induced corpus callosum damage and glial activation in vivo. Neuroreport, 2003, 14(11), 1429-1433.
[http://dx.doi.org/10.1097/00001756-200308060-00005] [PMID: 12960758]
[129]
Xu, J.; Chen, S.; Ahmed, S.H.; Chen, H.; Ku, G.; Goldberg, M.P.; Hsu, C.Y. Amyloid-beta peptides are cytotoxic to oligodendrocytes. J. Neurosci., 2001, 21(1), RC118.
[http://dx.doi.org/10.1523/JNEUROSCI.21-01-j0001.2001] [PMID: 11150354]
[130]
Pak, K.; Chan, S.L.; Mattson, M.P. Presenilin-1 mutation sensitizes oligodendrocytes to glutamate and amyloid toxicities, and exacerbates white matter damage and memory impairment in mice. Neuromolecular Med., 2003, 3(1), 53-64.
[http://dx.doi.org/10.1385/NMM:3:1:53] [PMID: 12665676]
[131]
O’Riordan, K.J.; Huang, I-C.; Pizzi, M.; Spano, P.; Boroni, F.; Egli, R.; Desai, P.; Fitch, O.; Malone, L.; Ahn, H.J.; Liou, H.C.; Sweatt, J.D.; Levenson, J.M. Regulation of nuclear factor kappaB in the hippocampus by group I metabotropic glutamate receptors. J. Neurosci., 2006, 26(18), 4870-4879.
[http://dx.doi.org/10.1523/JNEUROSCI.4527-05.2006] [PMID: 16672661]
[132]
Valerio, A.; Boroni, F.; Benarese, M.; Sarnico, I.; Ghisi, V.; Bresciani, L.G.; Ferrario, M.; Borsani, G.; Spano, P.; Pizzi, M. NF-kappaB pathway: A target for preventing β-amyloid (Abeta)-induced neuronal damage and Abeta42 production. Eur. J. Neurosci., 2006, 23(7), 1711-1720.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04722.x] [PMID: 16623827]
[133]
Spampinato, S.F.; Merlo, S.; Chisari, M.; Nicoletti, F.; Sortino, M.A. Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes. Front. Cell. Neurosci., 2015, 8, 462.
[http://dx.doi.org/10.3389/fncel.2014.00462] [PMID: 25642169]
[134]
Ondrejcak, T.; Klyubin, I.; Corbett, G.T.; Fraser, G.; Hong, W.; Mably, A.J.; Gardener, M.; Hammersley, J.; Perkinton, M.S.; Billinton, A.; Walsh, D.M.; Rowan, M.J. Cellular prion protein mediates the disruption of hippocampal synaptic plasticity by soluble tau in vivo. J. Neurosci., 2018, 38(50), 10595-10606.
[http://dx.doi.org/10.1523/JNEUROSCI.1700-18.2018] [PMID: 30355631]

© 2024 Bentham Science Publishers | Privacy Policy