当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet
Nature ( IF 64.8 ) Pub Date : 2019-01-01 , DOI: 10.1038/s41586-018-0853-0
Motoi Kimata , Hua Chen , Kouta Kondou , Satoshi Sugimoto , Prasanta K. Muduli , Muhammad Ikhlas , Yasutomo Omori , Takahiro Tomita , Allan. H. MacDonald , Satoru Nakatsuji , Yoshichika Otani

The spin Hall effect (SHE)1–5 achieves coupling between charge currents and collective spin dynamics in magnetically ordered systems and is a key element of modern spintronics6–9. However, previous research has focused mainly on non-magnetic materials, so the magnetic contribution to the SHE is not well understood. Here we show that antiferromagnets have richer spin Hall properties than do non-magnetic materials. We find that in the non-collinear antiferromagnet10 Mn3Sn, the SHE has an anomalous sign change when its triangularly ordered moments switch orientation. We observe contributions to the SHE (which we call the magnetic SHE) and the inverse SHE (the magnetic inverse SHE) that are absent in non-magnetic materials and that can be dominant in some magnetic materials, including antiferromagnets. We attribute the dominance of this magnetic mechanism in Mn3Sn to the momentum-dependent spin splitting that is produced by non-collinear magnetic order. This discovery expands the horizons of antiferromagnet spintronics and spin–charge coupling mechanisms.A magnetic contribution to the spin Hall effect is observed in the non-collinear antiferromagnet Mn3Sn, which is attributed to momentum-dependent spin splitting produced by non-collinear magnetic order.

中文翻译:

非共线反铁磁体中的磁性和磁性反自旋霍尔效应

自旋霍尔效应 (SHE)1-5 在磁有序系统中实现电荷电流和集体自旋动力学之间的耦合,并且是现代自旋电子学的关键要素 6-9。然而,以前的研究主要集中在非磁性材料上,因此对 SHE 的磁性贡献尚不清楚。在这里,我们表明反铁磁体比非磁性材料具有更丰富的自旋霍尔特性。我们发现在非共线反铁磁体 10 Mn3Sn 中,当其三角形有序矩切换方向时,SHE 具有异常的符号变化。我们观察到对 SHE(我们称之为磁性 SHE)和逆 SHE(磁性逆 SHE)的贡献,它们在非磁性材料中不存在并且在一些磁性材料中可能占主导地位,包括反铁磁体。我们将这种磁性机制在 Mn3Sn 中的优势归因于由非共线磁序产生的动量相关自旋分裂。这一发现扩展了反铁磁自旋电子学和自旋电荷耦合机制的视野。在非共线反铁磁 Mn3Sn 中观察到对自旋霍尔效应的磁性贡献,这归因于非共线磁序产生的动量相关自旋分裂。
更新日期:2019-01-01
down
wechat
bug