当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A composite solid polymer electrolyte incorporating MnO2 nanosheets with reinforced mechanical properties and electrochemical stability for lithium metal batteries†
Journal of Materials Chemistry A ( IF 11.9 ) Pub Date : 2019-12-24 , DOI: 10.1039/c9ta11542k
Yuhan Li 1, 2, 3, 4, 5 , Zongjie Sun 1, 2, 3, 4, 5 , Dongyu Liu 6, 7, 8, 9, 10 , Yiyang Gao 1, 2, 3, 4, 5 , Yuankun Wang 1, 2, 3, 4, 5 , Huaitian Bu 11, 12, 13, 14 , Mingtao Li 6, 7, 8, 9, 10 , Yanfeng Zhang 1, 2, 3, 4, 5 , Guoxin Gao 1, 2, 3, 4, 5 , Shujiang Ding 1, 2, 3, 4, 5
Affiliation  

A solid polymer electrolyte is expected to be useful for safe and high energy density lithium-metal batteries owing to its good flexibility and high degree of safety. The development of a polyethylene oxide (PEO) based solid electrolyte is still restrained by low ionic conductivity and unsatisfactory mechanical strength. Since MnO2 could combine with PEO chains and Li ions could undergo long-range migration on MnO2 nanosheets, MnO2 nanoflakes are chosen as fillers to improve the electrochemical and mechanical properties of a solid polymer electrolyte. A PEO/MnO2 composite solid polymer electrolyte (CSPE) displays a higher lithium ion transference number (0.378), higher ionic conductivity (1.5 times higher at 60 °C) and better tensile strength (2.3 times) than a PEO solid electrolyte. Density functional theory calculations reflect the fact that the binding energy between the PEO/Li complex and MnO2 is small and there is easy desorption of Li from PEO and migration on MnO2 nanosheets, indicating enhanced lithium ion transport in the electrolyte system. A solid-state lithium metal battery using a PEO/MnO2 CSPE delivers higher capacity (143.5 mA h g−1 after 300 cycles) than an electrolyte without fillers (61.2 mA h g−1 after 90 cycles). Soft-package lithium metal batteries with an MnO2 CSPE reveal high safety after cutting, nail and bending tests.

中文翻译:

包含MnO 2纳米片的复合固体聚合物电解质,具有增强的机械性能和电化学稳定性,适用于锂金属电池

固体聚合物电解质由于其良好的柔韧性和高度的安全性,有望用于安全和高能量密度的锂金属电池。低离子电导率和令人满意的机械强度仍然限制了基于聚环氧乙烷(PEO)的固体电解质的发展。由于MnO 2可以与PEO链结合并且Li离子可以在MnO 2纳米片上进行长距离迁移,因此选择MnO 2纳米薄片作为填料可以改善固体聚合物电解质的电化学和机械性能。PEO / MnO 2与PEO固体电解质相比,复合固体聚合物电解质(CSPE)具有更高的锂离子转移数(0.378),更高的离子电导率(在60°C时是1.5倍)和更好的拉伸强度(2.3倍)。密度泛函理论计算反映了这样一个事实,即PEO / Li络合物与MnO 2之间的结合能很小,并且Li很容易从PEO上解吸,并易于在MnO 2纳米片上迁移,这表明电解质系统中锂离子的传输增强。与没有填料的电解质(61.2 mA hg -1)相比,使用PEO / MnO 2 CSPE的固态锂金属电池可提供更高的容量(300次循环后为143.5 mA hg -190个周期后)。带有MnO 2 CSPE的软包装锂金属电池在切割,打钉和弯曲测试后显示出很高的安全性。
更新日期:2020-01-07
down
wechat
bug