当前位置: X-MOL 学术Nat. Rev. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding interface stability in solid-state batteries
Nature Reviews Materials ( IF 83.5 ) Pub Date : 2019-12-09 , DOI: 10.1038/s41578-019-0157-5
Yihan Xiao , Yan Wang , Shou-Hang Bo , Jae Chul Kim , Lincoln J. Miara , Gerbrand Ceder

Solid-state batteries (SSBs) using a solid electrolyte show potential for providing improved safety as well as higher energy and power density compared with conventional Li-ion batteries. However, two critical bottlenecks remain: the development of solid electrolytes with ionic conductivities comparable to or higher than those of conventional liquid electrolytes and the creation of stable interfaces between SSB components, including the active material, solid electrolyte and conductive additives. Although the first goal has been achieved in several solid ionic conductors, the high impedance at various solid/solid interfaces remains a challenge. Recently, computational models based on ab initio calculations have successfully predicted the stability of solid electrolytes in various systems. In addition, a large amount of experimental data has been accumulated for different interfaces in SSBs. In this Review, we summarize the experimental findings for various classes of solid electrolytes and relate them to computational predictions, with the aim of providing a deeper understanding of the interfacial reactions and insight for the future design and engineering of interfaces in SSBs. We find that, in general, the electrochemical stability and interfacial reaction products can be captured with a small set of chemical and physical principles.



中文翻译:

了解固态电池的接口稳定性

与传统的锂离子电池相比,使用固体电解质的固态电池(SSB)具有提高安全性以及更高的能量和功率密度的潜力。然而,仍然存在两个关键瓶颈:具有与传统液体电解质相当或更高的离子电导率的固体电解质的开发以及在SSB组件(包括活性材料,固体电解质和导电添加剂)之间建立稳定的界面。尽管在多个固体离子导体中已经实现了第一个目标,但是在各种固体/固体界面处的高阻抗仍然是一个挑战。最近,基于从头算的计算模型已成功预测了各种系统中固体电解质的稳定性。此外,对于SSB中的不同接口,已经积累了大量的实验数据。在本综述中,我们总结了各种固体电解质的实验结果,并将其与计算预测相关联,目的是提供对界面反应的更深入了解,并为单边带中的界面的未来设计和工程提供见识。我们发现,一般而言,电化学稳定性和界面反应产物可以用少量的化学和物理原理来捕获。目的是为了更深入地了解界面反应,并为单边带中的接口的未来设计和工程提供见识。我们发现,一般而言,电化学稳定性和界面反应产物可以用少量的化学和物理原理来捕获。目的是为了更深入地了解界面反应,并为SSB中的界面的未来设计和工程提供见解。我们发现,一般而言,电化学稳定性和界面反应产物可以用少量的化学和物理原理来捕获。

更新日期:2019-12-09
down
wechat
bug