当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures.
Chemical Reviews ( IF 62.1 ) Pub Date : 2019-12-03 , DOI: 10.1021/acs.chemrev.9b00234
Minji Ha 1 , Jae-Ho Kim 1 , Myunghwa You 1 , Qian Li 2 , Chunhai Fan 2 , Jwa-Min Nam 1
Affiliation  

Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.

中文翻译:

多组分等离子体纳米颗粒:从异质结构纳米颗粒到胶体复合纳米结构。

在过去的十年中,对具有独特且通用的光电特性的等离子纳米结构进行了广泛的研究。然而,等离子体纳米结构的全部潜力尚未得到充分开发,尤其是具有单调性质的单组分均质结构,添加用于制备多组分纳米颗粒的新组分可能会导致新的或未预期的性能。在这里,我们将术语“多组分纳米颗粒”定义为由两个或多个具有独特材料组成,形状或大小的缩合纳米级域组成的杂化结构。我们审查并讨论了设计原理和合成策略,以有效地组合多个组件以形成具有新的或改进的等离子体功能的杂化纳米颗粒。特别是,精确合成广泛多样的多组分等离激元结构,限制了等离激元异质结构的全部潜力的实现,一直是非常具有挑战性的。为了应对这一挑战,已经报道了几种合成方法,它们形成了多种不同的多组分等离子体纳米颗粒,主要基于异质成核,原子置换,在载体上的吸附以及生物分子介导的组装。此外,多组分等离激元纳米粒子的独特和协同特性,例如原始材料性能,微调的等离激元共振和耦合,增强的光-质相互作用,几何形状诱导的极化以及等离激元引起的能量和电荷在异质界面上的转移相结合,已报告。在这篇评论中,我们全面总结了最新的合成技术,独特的性能以及多组分等离激元纳米颗粒的有前景的应用方面的最新进展。这些等离激元纳米粒子包括异质结构纳米粒子和复合纳米结构,是通过直接合成以及物理力或生物分子介导的组装而制备的,它们在等离激元介导的能量转移,磁性等离激元,超分子和纳米生物技术方面具有巨大的潜力。
更新日期:2019-12-04
down
wechat
bug