当前位置: X-MOL 学术Living Rev. Sol. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quiet Sun magnetic fields: an observational view
Living Reviews in Solar Physics ( IF 20.9 ) Pub Date : 2019-02-18 , DOI: 10.1007/s41116-018-0017-1
Luis Bellot Rubio , David Orozco Suárez

The quiet Sun is the region of the solar surface outside of sunspots, pores, and plages. In continuum intensity it appears dominated by granular convection. However, in polarized light the quiet Sun exhibits impressive magnetic activity on a broad range of scales, from the 30,000 km of supergranular cells down to the smallest magnetic features of about 100 km resolvable with current instruments. Quiet Sun fields are observed to evolve in a coherent way, interacting with each other as they are advected by the horizontal photospheric flows. They appear and disappear over surprisingly short time scales, bringing large amounts of magnetic flux to the solar surface. For this reason they may be important contributors to the heating of the chromosphere. Peering into such fields is difficult because of the weak signals they produce, which are easily affected, and even completely hidden, by photon noise. Thus, their evolution and nature remain largely unknown. In recent years the situation has improved thanks to the advent of high-resolution, high-sensitivity spectropolarimetric measurements and the application of state-of-the-art Zeeman and Hanle effect diagnostics. Here we review this important aspect of solar magnetism, paying special attention to the techniques used to observe and characterize the fields, their evolution on the solar surface, and their physical properties as revealed by the most recent analyses. We identify the main open questions that need to be addressed in the future and offer some ideas on how to solve them.

中文翻译:

安静的太阳磁场:观察图

安静的太阳是太阳黑子,毛孔和斑点之外的太阳表面区域。在连续强度中,它似乎以颗粒对流为主。但是,在偏振光下,安静的太阳会在各种范围内表现出令人印象深刻的磁活动,从30,000 km的超颗粒细胞到当前仪器可分辨的最小磁特征(约100 km)。观察到安静的太阳场以相干的方式演化,并在水平光球流的作用下彼此相互作用。它们在令人惊讶的短时间尺度上出现和消失,为太阳表面带来了大量的磁通量。因此,它们可能是色球加热的重要因素。由于这些信号会产生微弱的信号,因此进入这些领域非常困难,它们很容易受到光子噪声的影响,甚至被完全隐藏。因此,它们的进化和性质在很大程度上仍然未知。近年来,由于高分辨率,高灵敏度的光谱极化测量技术的出现以及最先进的Zeeman和Hanle效应诊断技术的应用,情况有所改善。在这里,我们回顾了太阳磁学的这一重要方面,特别关注了用于观察和表征场的技术,它们在太阳表面的演化以及它们的最新分析所揭示的物理性质。我们确定了将来需要解决的主要开放性问题,并提供了一些有关如何解决这些问题的想法。近年来,由于高分辨率,高灵敏度的光谱极化测量技术的出现以及最先进的Zeeman和Hanle效应诊断技术的应用,情况得到了改善。在这里,我们回顾了太阳磁学的这一重要方面,并特别关注了用于观察和表征磁场的技术,它们在太阳表面的演化以及它们的最新分析所揭示的物理性质。我们确定了将来需要解决的主要开放性问题,并提供了一些有关如何解决这些问题的想法。近年来,由于高分辨率,高灵敏度的光谱极化测量技术的出现以及最先进的Zeeman和Hanle效应诊断技术的应用,情况有所改善。在这里,我们回顾了太阳磁学的这一重要方面,并特别关注了用于观察和表征磁场的技术,它们在太阳表面的演化以及它们的最新分析所揭示的物理性质。我们确定了将来需要解决的主要开放性问题,并提供了一些有关如何解决这些问题的想法。尤其要注意用于观测和表征场的技术,它们在太阳表面的演化以及它们的物理性质,如最近的分析所揭示的那样。我们确定了将来需要解决的主要开放性问题,并提供了一些有关如何解决这些问题的想法。特别注意用于观测和表征这些场的技术,它们在太阳表面的演化以及它们的物理性质(最新分析显示)。我们确定了将来需要解决的主要开放性问题,并提供了一些有关如何解决这些问题的想法。
更新日期:2019-02-18
down
wechat
bug