当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxide– and Silicate–Water Interfaces and Their Roles in Technology and the Environment
Chemical Reviews ( IF 62.1 ) Pub Date : 2023-05-15 , DOI: 10.1021/acs.chemrev.2c00130
José Leobardo Bañuelos 1 , Eric Borguet 2 , Gordon E Brown 3 , Randall T Cygan 4 , James J DeYoreo 5 , Patricia M Dove 6 , Marie-Pierre Gaigeot 7 , Franz M Geiger 8 , Julianne M Gibbs 9 , Vicki H Grassian 10 , Anastasia G Ilgen 11 , Young-Shin Jun 12 , Nadine Kabengi 13 , Lynn Katz 14 , James D Kubicki 15 , Johannes Lützenkirchen 16 , Christine V Putnis 17 , Richard C Remsing 18 , Kevin M Rosso 5 , Gernot Rother 19 , Marialore Sulpizi 20 , Mario Villalobos 21 , Huichun Zhang 22
Affiliation  

Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by “anomalies” or “non-idealities” such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide– and silicate–water interfaces. This critical review discusses how science progresses from understanding ideal solid–water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.

中文翻译:

氧化物和硅酸盐水界面及其在技术和环境中的作用

界面反应驱动地球上的所有元素循环,并在农业、水净化、能源生产和储存、环境污染物修复和核废料库管理等人类活动中发挥关键作用。21 世纪的到来标志着对矿物水界面的更详细了解的开始,这得益于使用可调谐高通量聚焦超快激光和 X 射线源提供近原子测量分辨率的技术的进步,以及纳米加工在液体细胞中启用透射电子显微镜的方法。这种向原子和纳米尺度测量的飞跃揭示了与尺度相关的现象,这些现象的反应热力学、动力学和途径与以前在更大系统上的观察结果不同。第二个关键进展是科学家假设但之前无法测试的新实验证据,即界面化学反应经常由“异常”或“非理想”驱动,例如缺陷、纳米限制和其他非典型化学结构。第三,计算化学的进步产生了新的见解,允许超越简单的示意图,从而产生这些复杂界面的分子模型。结合表面敏感测量,我们获得了界面结构和动力学的知识,包括下面的固体表面和紧邻的水和水性离子,从而能够更好地定义什么构成了氧化物-和硅酸盐-水界面。这篇批判性评论讨论了科学如何从理解理想的固水界面发展到更现实的系统,重点关注过去 20 年的成就,并确定社区应对的挑战和未来机遇。我们预计未来 20 年的重点将放在理解和预测更大空间和时间范围内的动态瞬态和反应结构以及结构和化学复杂性更高的系统上。跨学科的理论和实验专家的更密切合作对于实现这一伟大抱负仍然至关重要。我们预计未来 20 年的重点将放在理解和预测更大空间和时间范围内的动态瞬态和反应结构以及结构和化学复杂性更高的系统上。跨学科的理论和实验专家的更密切合作对于实现这一伟大抱负仍然至关重要。我们预计未来 20 年的重点将放在理解和预测更大空间和时间范围内的动态瞬态和反应结构以及结构和化学复杂性更高的系统上。跨学科的理论和实验专家的更密切合作对于实现这一伟大抱负仍然至关重要。
更新日期:2023-05-15
down
wechat
bug