当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial Engineering on Cathode and Anode with Iminated Polyaniline@rGO-CNTs for Robust and High-Rate Full Lithium–Sulfur Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-05-14 , DOI: 10.1002/aenm.202300646
Meng Li 1, 2 , Hao Chen 1 , Can Guo 3 , Shangshu Qian 2 , Hongpeng Li 4 , Zhenzhen Wu 2 , Chao Xing 2 , Pan Xue 5 , Shanqing Zhang 2
Affiliation  

Lithium–sulfur batteries (LSBs) currently suffer from severe polysulfide shuttling, slow redox kinetics at the sulfur cathode, and irreversible dendrite growth at the lithium anode. To address these issues, a dual interfacial engineering strategy on both the cathode and anode is proposed. For the cathode, iminated polyaniline (iPANI) is used to achieve energetic engineering to induce mid-energy level to the adsorption of polysulfides, and catalyze the redox conversion of sulfur species, and realize morphological engineering via self-assembly of iPANI onto a scaffold integrated by reduced graphene oxide (rGO) and carbon nanotubes (CNTs), namely iPANI@rGO-CNTs. For the anode, the highly conductive and lithiophilic nature and porous nanostructure of the iPANI@rGO-CNTs composite facilitates the uniform deposition of lithium-ions, significantly preventing the growth of lithium dendrites. Density functional theory calculations suggest that the iminated functional group at the excited state in iPANI can significantly suppress the shuttling effect, catalyze the conversion of sulfur species, and enhance the conversion of the sulfur species on the sulfur cathode. With the synergic effects of the iPANI@rGO-CNTs nanoreactors, the as-prepared LSBs deliver an excellent rate capability and outstanding cycling life. This large-scale production and application of the iPANI@rGO-CNTs nanocomposite may lead to the eventual commercialization of LSBs.

中文翻译:

使用亚胺化聚苯胺@rGO-CNT对阴极和阳极进行界面工程,以实现坚固且高倍率的全锂硫电池

锂硫电池(LSB)目前面临严重的多硫化物穿梭、硫阴极氧化还原动力学缓慢以及锂阳极不可逆枝晶生长的问题。为了解决这些问题,提出了阴极和阳极的双界面工程策略。对于阴极,使用亚胺化聚苯胺(iPANI)来实现能量工程,诱导中能级吸附多硫化物,并催化硫物种的氧化还原转化,并通过iPANI自组装到集成支架上实现形态工程由还原氧化石墨烯(rGO)和碳纳米管(CNT)组成,即iPANI@rGO-CNT。对于阳极,iPANI@rGO-CNTs复合材料的高导电性和亲锂性以及多孔纳米结构有利于锂离子的均匀沉积,显着抑制锂枝晶的生长。密度泛函理论计算表明,iPANI中激发态的亚胺化官能团可以显着抑制穿梭效应,催化硫物种的转化,并增强硫阴极上硫物种的转化。借助 iPANI@rGO-CNT 纳米反应器的协同效应,所制备的 LSB 具有出色的倍率性能和出色的循环寿命。iPANI@rGO-CNTs 纳米复合材料的大规模生产和应用可能会导致 LSBs 的最终商业化。并增强硫阴极上硫物质的转化。借助 iPANI@rGO-CNT 纳米反应器的协同效应,所制备的 LSB 具有出色的倍率性能和出色的循环寿命。iPANI@rGO-CNTs 纳米复合材料的大规模生产和应用可能会导致 LSBs 的最终商业化。并增强硫阴极上硫物质的转化。借助 iPANI@rGO-CNT 纳米反应器的协同效应,所制备的 LSB 具有出色的倍率性能和出色的循环寿命。iPANI@rGO-CNTs 纳米复合材料的大规模生产和应用可能会导致 LSBs 的最终商业化。
更新日期:2023-05-14
down
wechat
bug