当前位置: X-MOL 学术Aerosp. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bio-inspired design and performance evaluation of a novel morphing nose cone for aerospace vehicles
Aerospace Science and Technology ( IF 5.0 ) Pub Date : 2023-03-24 , DOI: 10.1016/j.ast.2023.108274
Xiangbing Wu , Zhenyu Wu , Lulu Liang , Jieliang Zhao , Wenzhong Wang , Shaoze Yan

An effective way to improve the flight capability and environmental adaptability of aerospace vehicles is to design a morphing aircraft structure, which can actively change their aerodynamic shape. During different physiological activities, the abdomens of bees are regularly deformed to improve the efficiency of movement. This was used as an inspiration for the design of a nose cone for aerospace vehicles. Based on the deformation mechanism of the bee abdomen, a bionic design of a variable configuration morphing nose cone (MNC) mechanism with high sensitivity is proposed, which can realize real-time reverse self-locking of the mechanism via auxiliary branch chains. Theoretical models for the kinematics and dynamics of the MNC mechanism under two configurations are derived, verifying that the proposed mechanism has good kinematic and dynamic characteristics. The theoretical models are validated through simulation studies. In addition, static finite element simulations are performed to verify that the auxiliary locking branch chain can significantly improve the bearing capacity of the proposed mechanism. Moreover, the force and thermal parameters of different configurations of the MNC under corresponding typical working conditions are analyzed, enabling the improvement of the aerospace vehicle aerodynamic characteristics by the morphing of its nose cone. Finally, based on the analytic hierarchy process, different drag and heat flux reduction schemes are comprehensively evaluated.



中文翻译:

航空航天飞行器新型变形鼻锥的仿生设计与性能评估

提高航天飞行器飞行能力和环境适应能力的有效途径是设计一种可主动改变其气动外形的可变形飞行器结构。在不同的生理活动中,蜜蜂的腹部会定期变形,以提高运动效率。这被用作航空航天器鼻锥设计的灵感。基于蜜蜂腹部的变形机制,提出了一种高灵敏度可变构型变形鼻锥(MNC)机构的仿生设计,可通过辅助支链实现机构的实时反向自锁。推导了两种配置下 MNC 机构的运动学和动力学理论模型,验证所提出的机制具有良好的运动学和动态特性。理论模型通过仿真研究得到验证。此外,还进行了静态有限元仿真,以验证辅助锁定支链可以显着提高所提出机构的承载能力。此外,分析了MNC不同配置在相应典型工作条件下的力和热参数,从而能够通过鼻锥的变形来改善航空航天器的空气动力学特性。最后基于层次分析法对不同的减阻减热方案进行综合评价。进行了静态有限元仿真,验证了辅助锁定支链可以显着提高所提出机构的承载能力。此外,分析了MNC不同配置在相应典型工作条件下的力和热参数,从而能够通过鼻锥的变形来改善航空航天器的空气动力学特性。最后基于层次分析法对不同的减阻减热方案进行综合评价。进行了静态有限元仿真,验证了辅助锁定支链可以显着提高所提出机构的承载能力。此外,分析了MNC不同配置在相应典型工作条件下的力和热参数,从而能够通过鼻锥的变形来改善航空航天器的空气动力学特性。最后基于层次分析法对不同的减阻减热方案进行综合评价。通过鼻锥的变形改善航空航天器的空气动力学特性。最后基于层次分析法对不同的减阻减热方案进行综合评价。通过鼻锥的变形改善航空航天器的空气动力学特性。最后基于层次分析法对不同的减阻减热方案进行综合评价。

更新日期:2023-03-24
down
wechat
bug