当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ Grown Mn(II) MOF upon Nickel Foam Acts as a Robust Self-Supporting Bifunctional Electrode for Overall Water Splitting: A Bimetallic Synergistic Collaboration Strategy
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-06-23 , DOI: 10.1021/acsami.2c04304
Anindita Goswami 1 , Debanjali Ghosh 2 , Debabrata Pradhan 2 , Kumar Biradha 1
Affiliation  

The design of highly efficient, cost-effective non-noble metal-based electrocatalysts with superior stability for overall water splitting (OWS) reactions is of great importance as well as of immense challenge for the upcoming sustainable and green energy conversion technologies. Herein, a convenient and simple in situ solvothermal method has been adopted to fabricate a self-supported, binder-free 3D electrode (Mn-MOF/NF) by the direct growth of a newly synthesized carboxylate-based pristine Mn(II)-metal–organic framework (Mn-MOF) upon the conducting substrate nickel foam (NF). The binder-free Mn-MOF/NF electrode exhibits excellent performances toward OWS with ultralow overpotentials of 280 mV@20 mA cm–2 for the oxygen evolution reaction (OER) and 125 mV@10 mA cm–2 for the hydrogen evolution reaction (HER) with remarkable durability. Mn-MOF/NF can also attain a current density of 10 mA cm–2 with a low cell voltage of 1.68 V in a 0.1 M KOH solution in a two-electrode system for OWS. The direct growth of nonconducting electroactive Mn-MOF materials upon conducting substrate NF provides an excellent mass transport of the electrolyte with a relatively low contact resistance due to the strong catalyst–substrate contact and enhances the efficient electron transport for OWS. The redox chemical etching of the self-sacrificial substrate NF during solvothermal synthesis introduces redox-active Ni2+ in Mn-MOF/NF. Thus, the excellent OWS electrocatalytic activity can mainly be attributed to the bimetallic synergistic collaboration of the two redox active metal centers (Mn2+ and Ni2+) along with the excellent support surface of NF, which provides a high specific surface area and maximum utilization of the electroactive metal ion sites by preventing the self-aggregation of the active sites. The Mn-MOF/NF electrode also exhibits superb stability and durability for a prolonged time throughout the multiple cycles of full water splitting reactions. Therefore, this work elucidates a convenient and smart approach for constructing MOF-based bifunctional electrocatalysts for OWS.

中文翻译:

镍泡沫上原位生长的 Mn(II) MOF 作为一种用于整体水分解的强大自支撑双功能电极:一种双金属协同合作策略

设计高效、具有成本效益的非贵金属基电催化剂,对整体水分解(OWS)反应具有优异的稳定性,对于即将到来的可持续和绿色能源转换技术具有重要意义和巨大挑战。在此,采用一种方便简单的原位溶剂热法,通过直接生长新合成的羧酸盐基原始 Mn(II) -金属来制备自支撑、无粘合剂的 3D 电极 ( Mn-MOF/NF )。 – 导电基底镍泡沫 (NF) 上的有机框架 ( Mn-MOF )。无粘合剂的Mn-MOF/NF电极对 OWS 表现出优异的性能,具有 280 mV@20 mA cm –2的超低过电位析氧反应 (OER) 和析氢反应 (HER) 的125 mV@10 mA cm -2具有出色的耐久性。在用于 OWS 的双电极系统中,Mn-MOF/NF还可以在 0.1 M KOH 溶液中以 1.68 V 的低电池电压获得 10 mA cm –2的电流密度。非导电电活性Mn-MOF材料在导电基底 NF 上的直接生长提供了优异的电解质质量传输,由于催化剂与基底的强接触,接触电阻相对较低,并增强了 OWS 的有效电子传输。溶剂热合成过程中自牺牲衬底 NF 的氧化还原化学蚀刻将氧化还原活性 Ni 2+引入锰-MOF/NF因此,优异的 OWS 电催化活性主要归因于两个氧化还原活性金属中心(Mn 2+和 Ni 2+ )的双金属协同作用以及优异的 NF 载体表面,它提供了高比表面积和最大通过防止活性位点的自聚集来利用电活性金属离子位点。在整个水分解反应的多个循环中, Mn-MOF/NF电极在长时间内也表现出极好的稳定性和耐久性。因此,这项工作阐明了一种方便且智能的方法来构建用于 OWS 的基于 MOF 的双功能电催化剂。
更新日期:2022-06-23
down
wechat
bug