当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2021-09-28 , DOI: 10.1039/d1ee01723c
Jiaxing Xu 1 , Tingxian Li 1 , Taisen Yan 1 , Si Wu 1 , Minqiang Wu 1 , Jingwei Chao 1 , Xiangyan Huo 1 , Pengfei Wang 1 , Ruzhu Wang 1
Affiliation  

Freshwater scarcity is a globally significant challenge threatening the development of human society. Sorption-based atmospheric water harvesting offers an appealing way to solve this challenge by extracting clean water from the air. However, the weak ability of sorbents to capture water from dry air and the low water productivity of devices are two long-standing bottlenecks for realizing efficient atmospheric water harvesting. Here, we report a vertically aligned nanocomposite sorbent, LiCl@rGO–SA, by confining lithium chloride (LiCl) in a reduced graphene oxide (rGO) and sodium alginate (SA) matrix. The sorbent shows high water uptake, as high as thrice its weight, by integrating the chemisorption of LiCl, deliquescence of monohydrate LiCl·H2O, and absorption of LiCl aqueous solution. Moreover, LiCl@rGO–SA exhibits fast sorption–desorption kinetics enabled by the vertically aligned and hierarchical pores of the rGO–SA matrix as water vapor transfer channels. We further engineered a scalable solar-driven rapid-cycling continuous atmospheric water harvester with synergetic heat and mass transfer enhancement. The water harvester using LiCl@rGO–SA realized eight continuous water capture-collection cycles per day and ultrahigh water productivity up to 2120 mLwater kgsorbent−1 day−1 from dry air without any other energy consumption. Our demonstration of the high-performance nanocomposite sorbent and scalable atmospheric water harvester offers a low-cost and promising strategy for efficiently extracting water from the air.

中文翻译:

通过具有垂直排列的纳米复合吸附剂的可扩展快速循环水收集器实现超高太阳能驱动的大气水生产

淡水短缺是威胁人类社会发展的全球性重大挑战。基于吸附的大气水收集提供了一种通过从空气中提取清洁水来解决这一挑战的有吸引力的方法。然而,吸附剂从干燥空气中捕获水分的能力较弱和装置的低产水能力是实现高效大气水收集的两个长期存在的瓶颈。在这里,我们通过将氯化锂 (LiCl) 限制在还原的氧化石墨烯 (rGO) 和海藻酸钠 (SA) 基质中,报告了一种垂直排列的纳米复合吸附剂 LiCl@rGO-SA。通过整合 LiCl 的化学吸附和一水 LiCl·H 2 的潮解,吸附剂表现出高吸水率,高达其重量的三倍O,并吸收氯化锂水溶液。此外,LiCl@rGO-SA 表现出快速的吸附-解吸动力学,这是由 rGO-SA 基质的垂直排列和分层孔作为水蒸气传输通道实现的。我们进一步设计了一种可扩展的太阳能驱动快速循环连续大气水收集器,具有协同传热和传质增强功能。使用 LiCl@rGO-SA 的集水器实现了每天 8 个连续的水捕获 - 收集循环和高达 2120 mLkg吸附剂的超高产水量-1-1从干燥空气中提取,无需任何其他能源消耗。我们展示的高性能纳米复合吸附剂和可扩展的大气水收集器为从空气中有效提取水提供了一种低成本且有前景的策略。
更新日期:2021-10-12
down
wechat
bug