当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Processing of Self-Healing Polymers for Soft Robotics
Advanced Materials ( IF 26.8 ) Pub Date : 2021-10-05 , DOI: 10.1002/adma.202104798
Ellen Roels Seppe Terryn Fumiya Iida Anton W. Bosman Sophie Norvez Frank Clemens Guy Van Assche Bram Vanderborght Joost Brancart

Soft robots are, due to their softness, inherently safe and adapt well to unstructured environments. However, they are prone to various damage types. Self-healing polymers address this vulnerability. Self-healing soft robots can recover completely from macroscopic damage, extending their lifetime. For developing healable soft robots, various formative and additive manufacturing methods have been exploited to shape self-healing polymers into complex structures. Additionally, several novel manufacturing techniques, noted as (re)assembly binding techniques that are specific to self-healing polymers, have been created. Herein, the wide variety of processing techniques of self-healing polymers for robotics available in the literature is reviewed, and limitations and opportunities discussed thoroughly. Based on defined requirements for soft robots, these techniques are critically compared and validated. A strong focus is drawn to the reversible covalent and (physico)chemical cross-links present in the self-healing polymers that do not only endow healability to the resulting soft robotic components, but are also beneficial in many manufacturing techniques. They solve current obstacles in soft robots, including the formation of robust multi-material parts, recyclability, and stress relaxation. This review bridges two promising research fields, and guides the reader toward selecting a suitable processing method based on a self-healing polymer and the intended soft robotics application.

中文翻译:

用于软机器人的自修复聚合物的加工

软机器人由于其柔软性,本质上是安全的,并且能够很好地适应非结构​​化环境。但是,它们容易受到各种损坏类型的影响。自我修复聚合物解决了这个漏洞。自我修复的软机器人可以从宏观损伤中完全恢复,延长其使用寿命。为了开发可修复的软机器人,已经利用各种成型和增材制造方法将自修复聚合物塑造成复杂的结构。此外,已经创建了几种新的制造技术,称为(重新)组装结合技术,这些技术是自修复聚合物特有的。本文回顾了文献中可用的用于机器人技术的各种自愈聚合物加工技术,并彻底讨论了局限性和机会。根据对软机器人的定义要求,这些技术经过严格的比较和验证。强烈关注自修复聚合物中存在的可逆共价和(物理)化学交联,它们不仅赋予最终软机器人组件可修复性,而且在许多制造技术中也是有益的。它们解决了软机器人目前的障碍,包括坚固的多材料部件的形成、可回收性和应力松弛。这篇综述将两个有前途的研究领域联系起来,并引导读者选择基于自愈聚合物和预期的软机器人应用的合适加工方法。强烈关注自修复聚合物中存在的可逆共价和(物理)化学交联,它们不仅赋予最终软机器人组件可修复性,而且在许多制造技术中也是有益的。它们解决了软机器人目前的障碍,包括坚固的多材料部件的形成、可回收性和应力松弛。这篇综述将两个有前途的研究领域联系起来,并引导读者选择基于自愈聚合物和预期的软机器人应用的合适加工方法。强烈关注自修复聚合物中存在的可逆共价和(物理)化学交联,它们不仅赋予最终软机器人组件可修复性,而且在许多制造技术中也是有益的。它们解决了软机器人目前的障碍,包括坚固的多材料部件的形成、可回收性和应力松弛。这篇综述将两个有前途的研究领域联系起来,并引导读者选择基于自愈聚合物和预期的软机器人应用的合适加工方法。
更新日期:2021-10-05
down
wechat
bug