当前位置: X-MOL 学术Int. J. Mach. Tool Manu. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Origin of material removal mechanism in shear thickening-chemical polishing
International Journal of Machine Tools and Manufacture ( IF 14.0 ) Pub Date : 2021-09-03 , DOI: 10.1016/j.ijmachtools.2021.103800
Min Li 1, 2 , Minghui Liu 3 , Oltmann Riemer 1, 2 , Bernhard Karpuschewski 1, 2 , Cheng Tang 3
Affiliation  

A shear thickening-chemical polishing (ST-CP) approach exploiting the recombination mechanism of shear-thickening and chemical-physical friction is proposed for ultraprecision machining of optical materials. The ST-CP slurries with dynamic rheological behaviour are characterized, and the optimal preparation process is explored for high-efficiency polishing of workpieces. A critical shear rate (CSR) prediction model in the flow field of slurries is systematically investigated and experimentally verified in detail. A mathematical control of the material removal rate (MRR) is modelled and developed for ST-CP. The shear-thickening-induced micro-cutting and chemical-physical friction contribute to the material removal mechanism in the ST-CP process. A special chemical reaction layer consisting of Li2O and Nb2O7 evoked on the workpiece, which can soften the surface layer of lithium niobate (LiNbO3), increases the chemical-physical friction and material removal through micro-cutting and shearing. The material removal process in ST-CP is a dynamic equilibrium process in which atoms of the workpiece surface are continuously involved to form new substances or oxides to achieve a soft chemical reaction layer, accompanied by the shear-thickening-induced micro-cutting action. A series of ST-CP experiments validate that the maximal error between theoretical and experimental data is less than 11.5%, which shows the high degree of accuracy of the MRR prediction model. Measurements and calculations are performed to explore the effects of shearing velocities, Al2O3 content, pH value, and oxidant content on surface roughness and MRR. When the shear-thickening induced micro-cutting and chemical reaction reach a dynamic equilibrium, a maximum MRR of up to 65.8 mg/h is achieved, and surface roughness is significantly reduced within 120 min from Ra 36.04 nm–1.46 nm with low subsurface damage (<5 nm). This investigation reveals that ST-CP is a progressive ultra-precision manufacturing approach for optical polishing and finishing of crystal materials.



中文翻译:

剪切增稠-化学抛光材料去除机理的起源

提出了一种利用剪切增稠和化学-物理摩擦的复合机制的剪切增稠-化学抛光 (ST-CP) 方法,用于光学材料的超精密加工。表征了具有动态流变行为的 ST-CP 浆料,并探索了用于工件高效抛光的最佳制备工艺。系统地研究了泥浆流场中的临界剪切率 (CSR) 预测模型并进行了详细的实验验证。材料去除率 (MRR) 的数学控制是为 ST-CP 建模和开发的。剪切增稠引起的微切削和化学物理摩擦有助于 ST-CP 工艺中的材料去除机制。由 Li 2 O 和 Nb组成的特殊化学反应层工件上产生的2 O 7可以软化铌酸锂(LiNbO 3)表层,通过微切割和剪切增加化学物理摩擦和材料去除。ST-CP中的材料去除过程是一个动态平衡过程,其中工件表面的原子不断参与形成新的物质或氧化物,以实现柔软的化学反应层,并伴随着剪切增厚引起的微切削作用。一系列ST-CP实验验证,理论数据与实验数据最大误差小于11.5%,显示了MRR预测模型的高度准确性。进行测量和计算以探索剪切速度 Al 2 的影响O 3含量、pH 值和氧化剂含量对表面粗糙度和 MRR 的影响。当剪切增稠引起的微切割和化学反应达到动态平衡时,最大 MRR 可达 65.8 mg/h,表面粗糙度在 120 分钟内从Ra 36.04 nm-1.46 nm显着降低,亚表面损伤低(<5 纳米)。该研究表明,ST-CP 是一种用于晶体材料光学抛光和精加工的渐进式超精密制造方法。

更新日期:2021-09-07
down
wechat
bug