当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Protecting a bosonic qubit with autonomous quantum error correction
Nature ( IF 64.8 ) Pub Date : 2021-02-10 , DOI: 10.1038/s41586-021-03257-0
Jeffrey M Gertler 1 , Brian Baker 2 , Juliang Li 1 , Shruti Shirol 1 , Jens Koch 2 , Chen Wang 1
Affiliation  

To build a universal quantum computer from fragile physical qubits, effective implementation of quantum error correction (QEC)1 is an essential requirement and a central challenge. Existing demonstrations of QEC are based on an active schedule of error-syndrome measurements and adaptive recovery operations2,3,4,5,6,7 that are hardware intensive and prone to introducing and propagating errors. In principle, QEC can be realized autonomously and continuously by tailoring dissipation within the quantum system1,8,9,10,11,12,13,14, but so far it has remained challenging to achieve the specific form of dissipation required to counter the most prominent errors in a physical platform. Here we encode a logical qubit in Schrödinger cat-like multiphoton states15 of a superconducting cavity, and demonstrate a corrective dissipation process that stabilizes an error-syndrome operator: the photon number parity. Implemented with continuous-wave control fields only, this passive protocol protects the quantum information by autonomously correcting single-photon-loss errors and boosts the coherence time of the bosonic qubit by over a factor of two. Notably, QEC is realized in a modest hardware setup with neither high-fidelity readout nor fast digital feedback, in contrast to the technological sophistication required for prior QEC demonstrations. Compatible with additional phase-stabilization and fault-tolerant techniques16,17,18, our experiment suggests quantum dissipation engineering as a resource-efficient alternative or supplement to active QEC in future quantum computing architectures.



中文翻译:

通过自主量子纠错保护玻色子量子比特

要从脆弱的物理量子比特构建通用量子计算机,有效实施量子纠错 (QEC) 1是一项基本要求,也是一项核心挑战。QEC 的现有演示基于错误综合症测量和自适应恢复操作2、3、4、5、6、7的主动计划,这些操作是硬件密集型的,并且容易引入和传播错误。原则上,QEC 可以通过在量子系统1,8,9,10,11,12,13,14内定制耗散来自主和连续地实现,但到目前为止,实现对抗所需的特定耗散形式仍然具有挑战性物理平台中最突出的错误。在这里,我们在类似薛定谔猫的多光子状态下编码逻辑量子位超导腔的15,并演示稳定误差综合症算子的校正耗散过程:光子数奇偶校验。这种被动协议仅通过连续波控制场实现,通过自主纠正单光子损失错误来保护量子信息,并将玻色子量子比特的相干时间提高两倍以上。值得注意的是,QEC 是在一个适度的硬件设置中实现的,既没有高保真读出也没有快速数字反馈,这与之前 QEC 演示所需的技术复杂性形成鲜明对比。与其他相位稳定和容错技术兼容16,17,18,我们的实验表明,量子耗散工程可以作为未来量子计算架构中主动 QEC 的资源高效替代方案或补充。

更新日期:2021-02-10
down
wechat
bug