当前位置: X-MOL 学术3D Print. Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Screen-Printed Nickel–Zinc Batteries: A Review of Additive Manufacturing and Evaluation Methods
3D Printing and Additive Manufacturing ( IF 2.3 ) Pub Date : 2021-06-02 , DOI: 10.1089/3dp.2020.0095
Muhamad Aiman Nazri 1 , Lai Ming Lim 2 , Zambri Samsudin 2 , Mohd Yusof Tura Ali 2 , Idris Mansor 2 , Muhammad Irsyad Suhaimi 2 , Shahrul Razi Meskon 1 , Anis Nurashikin Nordin 1
Affiliation  

The advent of personalized wearable devices has boosted the demand for portable, compact power sources. Compared with lithographic techniques, printed devices have lower fabrication costs, while still maintaining high throughput and precision. These factors make thick film printing or additive manufacturing ideal for the fabrication of low-cost batteries suitable for personalized devices. This article provides comprehensive guidelines for thick-film battery fabrication and characterization, with the focus on printed nickel–zinc (Ni-Zn) batteries. Ni-Zn batteries are a more environmental-friendly option compared with lithium-ion batteries (LIBs) as they are fully recyclable. In this work, important battery fundamentals have been described, especially terms of electrochemistry, basic design approaches, and the printing technology. Different design approaches, such as lateral, concentric, and stacked, are also discussed. Printed batteries can be configured as series or parallel constructions, depending on the power requirements of the application. The fabrication flow of printed battery electrodes for the laboratory-scale prototyping process starts from chemical preparation, mixing, printing, drying, pressing, stacking to finally sealing and testing. Of particular importance is the process of electrolyte injection and pouch sealing for the printed batteries to reduce leakage. This entire process flow is also compared with industrial fabrication flow for LIBs. Criteria for material and equipment selection are also addressed in this article to ensure appropriate electrode consistency and good performance. Two main testing methods cyclic voltammetry for the electrodes and charge–discharge for the battery are also explained in detail to serve as systematic guide for users to validate the functionality of their electrodes. This review article concludes with commercial applications of printed electrodes in the field of health and personalized wearable devices. This work indicates that printed Ni-Zn and other zinc alkaline batteries have a promising future. The success of these devices also opens up different areas of research, such as ink rheology, composition, and formulation of ink using sustainable sources.

中文翻译:

丝网印刷镍锌电池:增材制造和评估方法综述

个性化可穿戴设备的出现推动了对便携式、紧凑型电源的需求。与光刻技术相比,印刷设备的制造成本较低,同时仍保持高产量和精度。这些因素使厚膜印刷或增材制造成为制造适用于个性化设备的低成本电池的理想选择。本文提供了厚膜电池制造和表征的综合指南,重点是印刷镍锌 (Ni-Zn) 电池。与锂离子电池 (LIB) 相比,镍锌电池是一种更环保的选择,因为它们是完全可回收的。在这项工作中,已经描述了重要的电池基础知识,尤其是电化学、基本设计方法和印刷技术方面的术语。还讨论了不同的设计方法,例如横向、同心和堆叠。印刷电池可以配置为串联或并联结构,具体取决于应用的电源要求。用于实验室规模原型制作过程的印刷电池电极的制造流程从化学准备、混合、印刷、干燥、压制、堆叠到最后的密封和测试。特别重要的是印刷电池的电解液注入和袋密封过程,以减少泄漏。还将整个工艺流程与 LIB 的工业制造流程进行了比较。本文还介绍了材料和设备选择标准,以确保适当的电极一致性和良好的性能。还对电极的循环伏安法和电池的充放电两种主要测试方法进行了详细说明,以作为用户验证其电极功能的系统指南。这篇评论文章总结了印刷电极在健康和个性化可穿戴设备领域的商业应用。这项工作表明印刷镍锌和其他锌碱性电池具有广阔的前景。这些设备的成功也开辟了不同的研究领域,例如油墨流变学、成分和使用可持续来源的油墨配方。这篇评论文章总结了印刷电极在健康和个性化可穿戴设备领域的商业应用。这项工作表明印刷镍锌和其他锌碱性电池具有广阔的前景。这些设备的成功也开辟了不同的研究领域,例如油墨流变学、成分和使用可持续来源的油墨配方。这篇评论文章总结了印刷电极在健康和个性化可穿戴设备领域的商业应用。这项工作表明印刷镍锌和其他锌碱性电池具有广阔的前景。这些设备的成功也开辟了不同的研究领域,例如油墨流变学、成分和使用可持续来源的油墨配方。
更新日期:2021-06-05
down
wechat
bug