当前位置: X-MOL 学术Joule › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency
Joule ( IF 39.8 ) Pub Date : 2021-01-13 , DOI: 10.1016/j.joule.2020.12.009
Shaobing Xiong , Zhangyu Hou , Shijie Zou , Xiaoshuang Lu , Jianming Yang , Tianyu Hao , Zihao Zhou , Jianhua Xu , Yihan Zeng , Wei Xiao , Wei Dong , Danqin Li , Xiang Wang , Zhigao Hu , Lin Sun , Yuning Wu , Xianjie Liu , Liming Ding , Zhenrong Sun , Mats Fahlman , Qinye Bao

Perovskite solar cells (PSCs) suffer from significant nonradiative recombination, limiting their power conversion efficiencies. Here, for the first time, we directly observe a complete transformation of perovskite MAPbI3 surface region energetics from p- to n-type during defect passivation caused by natural additive capsaicin, attributed to the spontaneous formation of a p-n homojunction in perovskite active layer. We demonstrate that the p-n homojunction locates at ∼100 nm below perovskite surface. The energetics transformation and defect passivation promote charge transport in bulk perovskite layer and at perovskite/PCBM interface, suppressing both defect-assisted recombination and interface carrier recombination. As a result, an efficiency of 21.88% and a fill factor of 83.81% with excellent device stability are achieved, both values are the highest records for polycrystalline MAPbI3 based p-i-n PSCs reported to date. The proposed new concept of synergetic defect passivation and energetic modification via additive provides a huge potential for further improvement of PSC performance.



中文翻译:

缺陷钝化驱动高光伏效率期间钙钛矿表面区域从p型到n型转变的直接观察

钙钛矿太阳能电池(PSC)遭受大量的非辐射重组,从而限制了其功率转换效率。在这里,我们首次直接观察到钙钛矿MAPbI 3表面能从p-完全转变为n-由天然添加剂辣椒素引起的缺陷钝化过程中的这种类型,归因于钙钛矿活性层中pn同质结的自发形成。我们证明了pn同质结位于钙钛矿表面以下约100 nm处。高能转变和缺陷钝化促进了整体钙钛矿层和钙钛矿/ PCBM界面处的电荷传输,从而抑制了缺陷辅助重组和界面载流子重组。结果,获得了21.88%的效率和83.81%的填充因子,具有出色的器件稳定性,这两个值都是多晶MAPbI 3的最高记录迄今已报告的基于引脚的PSC。提出的协同缺陷钝化和通过添加剂进行能量修饰的新概念为进一步提高PSC性能提供了巨大的潜力。

更新日期:2021-02-17
down
wechat
bug