当前位置: X-MOL 学术Bioenerg. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding Ethanol Tolerance Mechanism in Saccharomyces cerevisiae to Enhance the Bioethanol Production : Current and Future Prospects
BioEnergy Research ( IF 3.1 ) Pub Date : 2021-01-08 , DOI: 10.1007/s12155-020-10228-2
Upasana Jhariya , Nishant A. Dafale , Shweta Srivastava , Rahul S. Bhende , Atya Kapley , Hemant J. Purohit

The commercial production of bioethanol from lignocellulosic biomass is challenged by the repression of cell growth and compromised fermentation conditions. However, employing Saccharomyces cerevisiae is an economically feasible process resulting in the effective conversion of fermentable sugars to bioethanol. S. cerevisiae’s high productive feature is contributed by robust alcohol dehydrogenase and the ability to tolerate various stresses during the fermentation process. The present review employs various bioinformatics pipeline to assess the structural insights of ADH and interaction among the tolerance genes. Docking of S. cerevisiae’s ADH interaction shows the high binding affinity of − 2.81 Kcal/mol with acetaldehyde contributed by four zinc fingers. In inhibitor tolerance capacity of S. cerevisiae was explored. The STRING platform sheds light on the mechanism and interaction of ASR1 and other stress-responsive elements playing a pivotal role in ethanol tolerance. The stress-responsive genes such as HSPs and MSN2/4 provide balanced physiology under various stress conditions. The present review unravels the complex mechanism behind the inhibitor and ethanol tolerance, directing to several bottlenecks for the improvisation of S. cerevisiae’s performance.



中文翻译:

了解酿酒酵母的乙醇耐受机制,以提高生物乙醇生产:当前和未来的前景。

从木质纤维素生物质商业生产生物乙醇受到细胞生长抑制和发酵条件受损的挑战。然而,使用酿酒酵母是一种经济上可行的方法,其导致可发酵糖有效地转化为生物乙醇。酿酒酵母的高产特性是由于强大的醇脱氢酶和在发酵过程中耐受各种压力的能力所致。目前的审查采用各种生物信息学管道来评估ADH的结构见解和耐受基因之间的相互作用。酿酒酵母的对接ADH相互作用显示出-2.81 Kcal / mol与由四个锌指贡献的乙醛的高结合亲和力。探索了酿酒酵母的抑制剂耐受能力。STRING平台揭示了ASR1与其他在乙醇耐受中起关键作用的应力响应元件的机理和相互作用。HSP和MSN2 / 4等应激反应基因在各种应激条件下均能提供平衡的生理功能。本篇综述揭示了抑制剂和乙醇耐受性背后的复杂机制,指出了酿酒酵母性能即兴化的几个瓶颈。

更新日期:2021-01-08
down
wechat
bug