当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Progress in layered cathode and anode nanoarchitectures for charge storage devices: Challenges and future perspective
Energy Storage Materials ( IF 20.4 ) Pub Date : 2020-11-21 , DOI: 10.1016/j.ensm.2020.11.033
Ibrahim Khan , Nadeem Baig , Shahid Ali , Muhammad Usman , Safyan A. Khan , Khalid Saeed

The morphological and structural characteristics of material always play pivotal roles to be applied in energy storage and conversion applications. The conventional electrode materials are facing severe challenges, including (i) high commercial cost, inadequate recyclability and charge storage capacity, (ii) technical, mechanical, and thermal instabilities, and (iii) safety issues due to oxygen release which lead to lifetime and performance declining of electrochemical energy storage (EES) devices. Owing to superior electrochemical characteristics, large surface area, and flexible stacking nature, the layered nanoarchitectures (2D or 3D) based electrodes have attained special consideration to design the next-generation EES devices. The layered materials provide slit-shaped channels for ion diffusion that enable fast movement of individual ions. We argue that stacking or pillaring of layered architectures opens an opportunity to construct desired cathodes and anodes with improved energy storage characteristics. We have discussed the recent progress (2015-2020) in the utilization of layered materials, particularly layered metal oxides (LMOs), layered carbon-based materials (LCMs), layered metal chalcogenides (LMCs) with supporting tables for each category. Additionally, we have provided an overview of advanced and newly explored layered materials, i.e. layered metal-organic frameworks (LMOFs), layered perovskites, and MXenes. We have also provided a comparative summary of the challenges associated with conventional morphologies such as structural instabilities and technical challenges. The final section of the review is comprehensively proposing useful strategies, which could be helpful to improve the energy storage and conversion performance of respective electrodes in EES devices.



中文翻译:

电荷存储器件的阴极和阳极层状纳米结构的进展:挑战和未来展望

材料的形态和结构特征始终在能量存储和转换应用中起着至关重要的作用。常规电极材料面临严峻挑战,其中包括:(i)高商业成本,可循环利用性和电荷存储能力不足;(ii)技术,机械和热不稳定性;以及(iii)由于氧气释放而导致的安全问题,从而导致使用寿命和电化学储能(EES)设备的性能下降。由于具有优越的电化学特性,较大的表面积和灵活的堆叠特性,基于层状纳米体系结构(2D或3D)的电极已成为设计下一代EES器件的特殊考虑因素。分层的材料提供了用于离子扩散的狭缝形通道,使单个离子能够快速移动。我们认为,分层架构的堆叠或立柱为构造具有改进的储能特性的所需阴极和阳极提供了机会。我们已经讨论了层状材料(尤其是层状金属氧化物(LMO),层状碳基材料(LCM),层状金属硫属化物(LMC))的利用方面的最新进展(2015-2020年),并为每个类别提供了支持表。另外,我们提供了高级和新探索的分层材料的概述,即分层的金属有机框架(LMOF),分层的钙钛矿和MXenes。我们还提供了与常规形态相关的挑战的比较摘要,例如结构不稳定性和技术挑战。审查的最后一部分全面提出了有用的策略,

更新日期:2020-12-01
down
wechat
bug